Superior vena cava flow: Role, assessment and controversies in the management of perinatal perfusion

      Abstract

      The superior vena cava (SVC) is a large vein responsible for the venous return of blood from structures located superior to the diaphragm. The flow in the SVC can be assessed with Doppler ultrasound and can be used as a proxy for cerebral perfusion. Early clinical research studies showed that low SVC flow, particularly if for a prolonged period, was associated with short term morbidity such as intraventricular hemorrhage, mortality, and poorer neurodevelopmental outcomes. However, these findings have not been consistently reported in more recent studies, and the role of SVC flow in early management and as a predictor of poor long-term neurodevelopment has been questioned. This paper provides an overview of SVC assessment, the expected range of findings, and reviews the role of SVC flow as a diagnostic and monitoring tool for the assessment of perinatal perfusion.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Boode W.P.
        Cardiac output monitoring in newborns.
        Early Hum Dev. 2010; 86: 143-148
        • Kluckow M.
        • Evans N.
        Superior vena cava flow in newborn infants: a novel marker of systemic blood flow.
        Arch Dis Child Fetal Neonatal Ed. 2000; 82: F182-F187
        • Bennett W.F.
        • Altaf F.
        • Deslauriers J.
        Anatomy of the superior vena cava and brachiocephalic veins.
        Thorac Surg Clin. 2011; 21 (viii): 197-203
        • Ginghina C.
        • Beladan C.C.
        • Iancu M.
        • Calin A.
        • Popescu B.A.
        Respiratory maneuvers in echocardiography: a review of clinical applications.
        Cardiovasc Ultrasound. 2009; 7: 42
        • Salim M.A.
        • DiSessa T.G.
        • Arheart K.L.
        • Alpert B.S.
        Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study.
        Circulation. 1995; 92: 1860-1865
        • Tamura M.
        • Harada K.
        • Takada G.
        Changes in superior vena cava velocity patterns in normal neonates.
        Am J Cardiol. 1998; 81: 362-365
        • Kluckow M.
        • Evans N.
        Low superior vena cava flow and intraventricular haemorrhage in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2000; 82: F188-F194
        • Groves A.M.
        • Kuschel C.A.
        • Knight D.B.
        • Skinner J.R.
        Echocardiographic assessment of blood flow volume in the superior vena cava and descending aorta in the newborn infant.
        Arch Dis Child Fetal Neonatal Ed. 2008; 93: F24-F28
        • Lee A.
        • Liestol K.
        • Nestaas E.
        • Brunvand L.
        • Lindemann R.
        • Fugelseth D.
        Superior vena cava flow: feasibility and reliability of the off-line analyses.
        Arch Dis Child Fetal Neonatal Ed. 2010; 95: F121-F125
        • Mahoney L.
        • Fernandez-Alvarez J.R.
        • Rojas-Anaya H.
        • Aiton N.
        • Wertheim D.
        • Seddon P.
        • et al.
        Intra- and inter-rater agreement of superior vena cava flow and right ventricular outflow measurements in late preterm and term neonates.
        J Ultrasound Med. 2018; 37: 2181-2190
        • Harabor A.
        • Fruitman D.
        Comparison between a suprasternal or high parasternal approach and an abdominal approach for measuring superior vena cava Doppler velocity in neonates.
        J Ultrasound Med. 2012; 31: 1901-1907
        • Ficial B.
        • Bonafiglia E.
        • Padovani E.M.
        • Prioli M.A.
        • Finnemore A.E.
        • Cox D.J.
        • et al.
        A modified echocardiographic approach improves reliability of superior vena caval flow quantification.
        Arch Dis Child Fetal Neonatal Ed. 2017; 102: F7-f11
        • Popat H.
        • Robledo K.P.
        • Sebastian L.
        • Evans N.
        • Gill A.
        • Kluckow M.
        • et al.
        Interobserver agreement and image quality of functional cardiac ultrasound measures used in a randomised trial of delayed cord clamping in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103 (F257-f63)
        • de Waal K.
        • Kluckow M.
        • Evans N.
        Weight corrected percentiles for blood vessel diameters used in flow measurements in preterm infants.
        Early Hum Dev. 2013; 89: 939-942
        • Ficial B.
        • Finnemore A.E.
        • Cox D.J.
        • Broadhouse K.M.
        • Price A.N.
        • Durighel G.
        • et al.
        Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants.
        J Am Soc Echocardiogr. 2013; 26: 1365-1371
        • Takami T.
        • Sunohara D.
        • Kondo A.
        • Mizukaki N.
        • Suganami Y.
        • Takei Y.
        • et al.
        Changes in cerebral perfusion in extremely LBW infants during the first 72 h after birth.
        Pediatr Res. 2010; 68: 435-439
        • Sirc J.
        • Dempsey E.M.
        • Miletin J.
        Cerebral tissue oxygenation index, cardiac output and superior vena cava flow in infants with birth weight less than 1250 grams in the first 48 hours of life.
        Early Hum Dev. 2013; 89: 449-452
        • Moran M.
        • Miletin J.
        • Pichova K.
        • Dempsey E.M.
        Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant.
        Acta Paediatr. 2009; 98: 43-46
        • Cerbo R.M.
        • Scudeller L.
        • Maragliano R.
        • Cabano R.
        • Pozzi M.
        • Tinelli C.
        • et al.
        Cerebral oxygenation, superior vena cava flow, severe intraventricular hemorrhage and mortality in 60 very low birth weight infants.
        Neonatology. 2015; 108: 246-252
        • Janaillac M.
        • Beausoleil T.P.
        • Barrington K.J.
        • Raboisson M.J.
        • Karam O.
        • Dehaes M.
        • et al.
        Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life.
        Eur J Pediatr. 2018; 177: 541-550
        • West C.R.
        • Groves A.M.
        • Williams C.E.
        • Harding J.E.
        • Skinner J.R.
        • Kuschel C.A.
        • et al.
        Early low cardiac output is associated with compromised electroencephalographic activity in very preterm infants.
        Pediatr Res. 2006; 59: 610-615
        • Shah D.
        • Paradisis M.
        • Bowen J.R.
        Relationship between systemic blood flow, blood pressure, inotropes, and aEEG in the first 48 h of life in extremely preterm infants.
        Pediatr Res. 2013; 74: 314-320
        • Hochwald O.
        • Jabr M.
        • Osiovich H.
        • Miller S.P.
        • McNamara P.J.
        • Lavoie P.M.
        Preferential cephalic redistribution of left ventricular cardiac output during therapeutic hypothermia for perinatal hypoxic-ischemic encephalopathy.
        J Pediatr. 2014; 164: 999-1004.e1
        • Ha K.S.
        • Choi B.M.
        • Lee E.H.
        • Shin J.
        • Cho H.J.
        • Jang G.Y.
        • et al.
        Chronological echocardiographic changes in healthy term neonates within postnatal 72 hours using Doppler studies.
        J Kor Med Sci. 2018; 33: e155
        • Groves A.M.
        • Kuschel C.A.
        • Knight D.B.
        • Skinner J.R.
        Relationship between blood pressure and blood flow in newborn preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2008; 93: F29-F32
        • Sloot S.C.
        • de Waal K.A.
        • van der Lee J.H.
        • van Kaam A.H.
        Central blood flow measurements in stable preterm infants after the transitional period.
        Arch Dis Child Fetal Neonatal Ed. 2010; 95: F369-F372
        • de Waal K.A.
        The methodology of Doppler-derived central blood flow measurements in newborn infants.
        Int J Pediatr. 2012; 2012: 680162
        • Hunt R.W.
        • Evans N.
        • Rieger I.
        • Kluckow M.
        Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants.
        J Pediatr. 2004; 145: 588-592
        • Osborn D.A.
        • Evans N.
        • Kluckow M.
        • Bowen J.R.
        • Rieger I.
        Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants.
        Pediatrics. 2007; 120: 372-380
        • Osborn D.A.
        • Evans N.
        • Kluckow M.
        Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants.
        Pediatrics. 2003; 112: 33-39
        • Noori S.
        • Seri I.
        Does targeted neonatal echocardiography affect hemodynamics and cerebral oxygenation in extremely preterm infants?.
        J Perinatol. 2014; 34: 847-849
        • Riera J.
        • Cabanas F.
        • Serrano J.J.
        • Bravo M.C.
        • Lopez-Ortego P.
        • Sanchez L.
        • et al.
        New time-frequency method for cerebral autoregulation in newborns: predictive capacity for clinical outcomes.
        J Pediatr. 2014; 165: 897-902.e1
        • Holberton J.R.
        • Drew S.M.
        • Mori R.
        • Konig K.
        The diagnostic value of a single measurement of superior vena cava flow in the first 24 h of life in very preterm infants.
        Eur J Pediatr. 2012; 171: 1489-1495
        • Bates S.
        • Odd D.
        • Luyt K.
        • Mannix P.
        • Wach R.
        • Evans D.
        • et al.
        Superior vena cava flow and intraventricular haemorrhage in extremely preterm infants.
        J Matern Fetal Neonatal Med. 2016; 29: 1581-1587
        • Popat H.
        • Robledo K.P.
        • Kirby A.
        • Sebastian L.
        • Evans N.
        • Gill A.
        • et al.
        Associations of measures of systemic blood flow used in a randomized trial of delayed cord clamping in preterm infants.
        Pediatr Res. 2019; 86: 71-76
        • Handley S.C.
        • Passarella M.
        • Lee H.C.
        • Lorch S.A.
        Incidence trends and risk factor variation in severe intraventricular hemorrhage across a population based cohort.
        J Pediatr. 2018; 200 (24-9.e3)
        • de Waal K.A.
        • Evans N.
        • Osborn D.A.
        • Kluckow M.
        Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns.
        Arch Dis Child Fetal Neonatal Ed. 2007; 92: F444-F448
        • de Waal K.
        • Evans N.
        • van der Lee J.
        • van Kaam A.
        Effect of lung recruitment on pulmonary, systemic, and ductal blood flow in preterm infants.
        J Pediatr. 2009; 154: 651-655
        • Osborn D.A.
        • Evans N.
        Randomized trial of high-frequency oscillatory ventilation versus conventional ventilation: effect on systemic blood flow in very preterm infants.
        J Pediatr. 2003; 143: 192-198
        • Beker F.
        • Rogerson S.R.
        • Hooper S.B.
        • Sehgal A.
        • Davis P.G.
        Hemodynamic effects of nasal continuous positive airway pressure in preterm infants with evolving chronic lung disease, a crossover randomized trial.
        J Pediatr. 2015; 166: 477-479
        • Fajardo M.F.
        • Claure N.
        • Swaminathan S.
        • Sattar S.
        • Vasquez A.
        • D'Ugard C.
        • et al.
        Effect of positive end-expiratory pressure on ductal shunting and systemic blood flow in preterm infants with patent ductus arteriosus.
        Neonatology. 2014; 105: 9-13
        • Abdel-Hady H.
        • Matter M.
        • Hammad A.
        • El-Refaay A.
        • Aly H.
        Hemodynamic changes during weaning from nasal continuous positive airway pressure.
        Pediatrics. 2008; 122: e1086-e1090
        • Kumagai T.
        • Higuchi R.
        • Higa A.
        • Tsuno Y.
        • Hiramatsu C.
        • Sugimoto T.
        • et al.
        Correlation between echocardiographic superior vena cava flow and short-term outcome in infants with asphyxia.
        Early Hum Dev. 2013; 89: 307-310
        • Montaldo P.
        • Cuccaro P.
        • Caredda E.
        • Pugliese U.
        • De Vivo M.
        • Orbinato F.
        • et al.
        Electrocardiographic and echocardiographic changes during therapeutic hypothermia in encephalopathic infants with long-term adverse outcome.
        Resuscitation. 2018; 130: 99-104
        • Goulding R.M.
        • Stevenson N.J.
        • Murray D.M.
        • Livingstone V.
        • Filan P.M.
        • Boylan G.B.
        Heart rate variability in hypoxic ischemic encephalopathy during therapeutic hypothermia.
        Pediatr Res. 2017; 81: 609-615
        • Lemmers P.M.
        • Zwanenburg R.J.
        • Benders M.J.
        • de Vries L.S.
        • Groenendaal F.
        • van Bel F.
        • et al.
        Cerebral oxygenation and brain activity after perinatal asphyxia: does hypothermia change their prognostic value?.
        Pediatr Res. 2013; 74: 180-185
        • El Hajjar M.
        • Vaksmann G.
        • Rakza T.
        • Kongolo G.
        • Storme L.
        Severity of the ductal shunt: a comparison of different markers.
        Arch Dis Child Fetal Neonatal Ed. 2005; 90: F419-F422
        • De Buyst J.
        • Rakza T.
        • Pennaforte T.
        • Johansson A.B.
        • Storme L.
        Hemodynamic effects of fluid restriction in preterm infants with significant patent ductus arteriosus.
        J Pediatr. 2012; 161: 404-408
        • van Laere D.
        • van Overmeire B.
        • Gupta S.
        • El-Khuffash A.
        • Savoia M.
        • McNamara P.J.
        • et al.
        Application of NPE in the assessment of a patent ductus arteriosus.
        Pediatr Res. 2018; 84: 46-56
        • Osborn D.
        • Evans N.
        • Kluckow M.
        Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow.
        J Pediatr. 2002; 140: 183-191
        • Bravo M.C.
        • Lopez-Ortego P.
        • Sanchez L.
        • Riera J.
        • Madero R.
        • Cabanas F.
        • et al.
        Randomized, placebo-controlled trial of dobutamine for low superior vena cava flow in infants.
        J Pediatr. 2015; 167 (e1-2): 572-578
        • Paradisis M.
        • Evans N.
        • Kluckow M.
        • Osborn D.
        • McLachlan A.J.
        Pilot study of milrinone for low systemic blood flow in very preterm infants.
        J Pediatr. 2006; 148: 306-313
        • Paradisis M.
        • Evans N.
        • Kluckow M.
        • Osborn D.
        Randomized trial of milrinone versus placebo for prevention of low systemic blood flow in very preterm infants.
        J Pediatr. 2009; 154: 189-195
        • Meyer M.P.
        • Mildenhall L.
        Delayed cord clamping and blood flow in the superior vena cava in preterm infants: an observational study.
        Arch Dis Child Fetal Neonatal Ed. 2012; 97: F484-F486
        • Sommers R.
        • Stonestreet B.S.
        • Oh W.
        • Laptook A.
        • Yanowitz T.D.
        • Raker C.
        • et al.
        Hemodynamic effects of delayed cord clamping in premature infants.
        Pediatrics. 2012; 129: e667-e672
        • Katheria A.C.
        • Truong G.
        • Cousins L.
        • Oshiro B.
        • Finer N.N.
        Umbilical cord milking versus delayed cord clamping in preterm infants.
        Pediatrics. 2015; 136: 61-69
        • Popat H.
        • Robledo K.P.
        • Sebastian L.
        • Evans N.
        • Gill A.
        • Kluckow M.
        • et al.
        Effect of delayed cord clamping on systemic blood flow: a randomized controlled trial.
        J Pediatr. 2016; 178 (81-6.e2)
        • Azhibekov T.
        • Soleymani S.
        • Lee B.H.
        • Noori S.
        • Seri I.
        Hemodynamic monitoring of the critically ill neonate: an eye on the future.
        Semin Fetal Neonatal Med. 2015; 20: 246-254
        • de Boode W.P.
        • van der Lee R.
        • Horsberg Eriksen B.
        • Nestaas E.
        • Dempsey E.
        • Singh Y.
        • et al.
        The role of Neonatologist Performed Echocardiography in the assessment and management of neonatal shock.
        Pediatr Res. 2018; 84: 57-67
        • Braunwald E.
        Regulation of the circulation.
        N Engl J Med. 1974; 290: 1124-1129
        • Mertens L.
        • Seri I.
        • Marek J.
        • Arlettaz R.
        • Barker P.
        • McNamara P.
        • et al.
        Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training.
        Eur J Echocardiogr. 2011; 12: 715-736
        • Tissot C.
        • Muehlethaler V.
        • Sekarski N.
        Basics of functional echocardiography in children and neonates.
        Front Pediatr. 2017; 5: 235