Advertisement

Arterial spin labeling perfusion in neonates

      Abstract

      Abnormal brain perfusion is a key mechanism underlying neonatal brain injury. Understanding the mechanisms leading to brain perfusion changes in high-risk neonates and how these alterations may influence brain development is key to improve therapeutic strategies preventing brain injury and the neurodevelopmental outcome of these infants. To date, several studies demonstrated that Arterial Spin Labeling is a reliable tool to accurately and non-invasively analyze brain perfusion, facilitating the understanding of normal and pathological mechanisms underlying neonatal brain maturation and injury. This paper provides an overview of the normal pattern of brain perfusion on Arterial Spin Labeling in term and preterm neonates, and reviews perfusion abnormalities associated with common neonatal neurological disorders.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Volpe J.
        Hypoxic ischemic encephalopathy.
        in: Clinical aspect in volpe J J neurology of newborn. Saudas Elsevier, 2008
        • Millar L.J.
        • Shi L.
        • Hoerder-Suabedissen A.
        • Molnár Z.
        Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges.
        Front Cell Neurosci. 2017; 11https://doi.org/10.3389/fncel.2017.00078
        • ∗Wintermark P.
        Injury and repair in perinatal brain injury: insights from non-invasive MR perfusion imaging.
        Semin Perinatol. 2015; 39: 124-129https://doi.org/10.1053/j.semperi.2015.01.005
        • Kelly C.J.
        • Arulkumaran S.
        • Tristão Pereira C.
        • Cordero-Grande L.
        • Hughes E.J.
        • Teixeira R.P.A.G.
        • et al.
        Neuroimaging findings in newborns with congenital heart disease prior to surgery: an observational study.
        Arch Dis Child. 2019; 104: 1042-1048https://doi.org/10.1136/archdischild-2018-314822
        • ∗Alsop D.C.
        • Detre J.A.
        • Golay X.
        • Günther M.
        • Hendrikse J.
        • Hernandez-Garcia L.
        • et al.
        Recommended implementation of arterial spin-labeled Perfusion mri for clinical applications: a consensus of the ISMRM Perfusion Study group and the European consortium for ASL in dementia.
        Magn Reson Med. 2015; 73: 102-116https://doi.org/10.1002/mrm.25197
        • Levene M.I.
        • Fenton A.C.
        • Evans D.H.
        • Archer L.N.J.
        • Shortland D.B.
        • Gibson N.A.
        Severe birth asphixia and abnormal cerebral blood-fflow velocity.
        Dev Med Child Neurol. 1989; 31: 427-434https://doi.org/10.1111/j.1469-8749.1989.tb04020.x
        • Hwang M.
        Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential.
        Pediatr Radiol. 2019; 49: 254-262https://doi.org/10.1007/s00247-018-4270-1
        • Garvey A.A.
        • Dempsey E.M.
        Applications of near infrared spectroscopy in the neonate.
        Curr Opin Pediatr. 2018; 30: 209-215https://doi.org/10.1097/MOP.0000000000000599
        • Marin T.
        • Moore J.
        Understanding near-infrared spectroscopy.
        Adv Neonatal Care. 2011; 11: 382-388https://doi.org/10.1097/ANC.0b013e3182337ebb
        • Nicklin S.E.
        • Hassan I.A.A.
        • Wickramasinghe Y.A.
        • Spencer S.A.
        The light still shines, but not that brightly? The current status of perinatal near infrared spectroscopy.
        Arch Dis Child Fetal Neonatal. 2003; 88https://doi.org/10.1136/fn.88.4.f263
        • Shi Y.
        • Jin R bin
        • Zhao J ning
        • Tang S fang
        • qiang Li H.
        • yu Li T.
        Brain positron emission tomography in preterm and term newborn infants.
        Early Hum Dev. 2009; 85: 429-432https://doi.org/10.1016/j.earlhumdev.2009.02.002
        • Chugani H.T.
        A critical period of brain development: studies of cerebral glucose utilization with PET.
        in: Prev. Med. (Baltim).vol. 27. Academic Press Inc., 1998: 184-188https://doi.org/10.1006/pmed.1998.0274
        • ∗Wintermark P.
        • Moessinger A.C.
        • Gudinchet F.
        • Meuli R.
        Perfusion-weighted magnetic resonance imaging patterns of hypoxic-ischemic encephalopathy in term neonates.
        J Magn Reson Imag. 2008; 28: 1019-1025https://doi.org/10.1002/jmri.21525
        • ∗Miranda M.J.
        • Olofsson K.
        • Sidaros K.
        Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling.
        Pediatr Res. 2006; 60: 359-363https://doi.org/10.1203/01.pdr.0000232785.00965.b3
        • ∗Tortora D.
        • Mattei P.A.
        • Navarra R.
        • Panara V.
        • Salomone R.
        • Rossi A.
        • et al.
        Prematurity and brain perfusion: arterial spin labeling MRI.
        NeuroImage Clin. 2017; 15: 401-407https://doi.org/10.1016/j.nicl.2017.05.023
        • Boudes E.
        • Gilbert G.
        • Leppert I.R.
        • Tan X.
        • Pike G.B.
        • Saint-Martin C.
        • et al.
        Measurement of brain perfusion in newborns: pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL).
        NeuroImage Clin. 2014; 6: 126-133https://doi.org/10.1016/j.nicl.2014.08.010
        • Varela M.
        • Petersen E.T.
        • Golay X.
        • Hajnal J.V.
        Cerebral blood flow measurements in infants using look-locker arterial spin labeling.
        J Magn Reson Imag. 2015; 41: 1591-1600https://doi.org/10.1002/jmri.24716
        • Van Osch M.J.P.
        • Teeuwisse W.M.
        • Van Walderveen M.A.A.
        • Hendrikse J.
        • Kies D.A.
        • Van Buchem M.A.
        Can arterial spin labeling detect white matter perfusion signal?.
        Magn Reson Med. 2009; 62: 165-173https://doi.org/10.1002/mrm.22002
        • Ouyang M.
        • Jeon T.
        • Roberts T.P.L.
        • Huang H.
        • Ouyang M.
        • Liu P.
        • et al.
        Heterogeneous increases of regional cerebral blood flow during preterm brain development: preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI.
        Neuroimage. 2017; 147: 233-242https://doi.org/10.1016/j.neuroimage.2016.12.034
        • ∗De Vis J.B.
        • Petersen E.T.
        • De Vries L.S.
        • Groenendaal F.
        • Kersbergen K.J.
        • Alderliesten T.
        • et al.
        Regional changes in brain perfusion during brain maturation measured non-invasively with Arterial Spin Labeling MRI in neonates.
        Eur J Radiol. 2013; 82: 538-543https://doi.org/10.1016/j.ejrad.2012.10.013
        • du Plessis A.J.
        Cerebral blood flow and metabolism in the developing fetus.
        Clin Perinatol. 2009; 36: 531-548https://doi.org/10.1016/j.clp.2009.07.002
        • Hüppi P.S.
        • Warfield S.
        • Kikinis R.
        • Barnes P.D.
        • Zientara G.P.
        • Jolesz F.A.
        • et al.
        Quantitative magnetic resonance imaging of brain development in premature and mature newborns.
        Ann Neurol. 1998; 43: 224-235https://doi.org/10.1002/ana.410430213
        • Marín-Padilla M.
        Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory.
        J Comp Neurol. 1992; 321: 223-240https://doi.org/10.1002/cne.903210205
        • ∗Bouyssi-Kobar M.
        • Murnick J.
        • Brossard-Racine M.
        • Chang T.
        • Mahdi E.
        • Jacobs M.
        • et al.
        Altered cerebral perfusion in infants born preterm compared with infants born full term.
        J Pediatr. 2018; 193 (e2): 54-61https://doi.org/10.1016/j.jpeds.2017.09.083
        • Varela M.
        • Hajnal J.V.
        • Petersen E.T.
        • Golay X.
        • Merchant N.
        • Larkman D.J.
        A method for rapid in vivo measurement of blood T1.
        NMR Biomed. 2011; 24: 80-88https://doi.org/10.1002/nbm.1559
        • Kim H.G.
        • Lee J.H.
        • Choi J.W.
        • Han M.
        • Gho S.M.
        • Moon Y.
        Multidelay arterial spin-labeling MRI in neonates and infants: cerebral perfusion changes during brain maturation.
        Am J Neuroradiol. 2018; 39: 1912-1918https://doi.org/10.3174/ajnr.A5774
        • Jandó G.
        • Mikó-Baráth E.
        • Markó K.
        • Hollódy K.
        • Török B.
        • Kovacs I.
        Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans.
        Proc Natl Acad Sci U S A. 2012; 109: 11049-11052https://doi.org/10.1073/pnas.1203096109
        • Grayson D.S.
        • Fair D.A.
        Development of large-scale functional networks from birth to adulthood: a guide to the neuroimaging literature.
        Neuroimage. 2017; 160: 15-31https://doi.org/10.1016/j.neuroimage.2017.01.079
        • ∗Wintermark P.
        • Hansen A.
        • Gregas M.C.
        • Soul J.
        • Labrecque M.
        • Robertson R.L.
        • et al.
        Brain perfusion in asphyxiated newborns treated with therapeutic hypothermia.
        Am J Neuroradiol. 2011; 32: 2023-2029https://doi.org/10.3174/ajnr.A2708
        • Pienaar R.
        • Paldino M.J.
        • Madan N.
        • Krishnamoorthy K.S.
        • Alsop D.C.
        • Dehaes M.
        • et al.
        A quantitative method for correlating observations of decreased apparent diffusion coefficient with elevated cerebral blood perfusion in newborns presenting cerebral ischemic insults.
        Neuroimage. 2012; 63: 1510-1518https://doi.org/10.1016/j.neuroimage.2012.07.062
        • De Vis J.B.
        • Hendrikse J.
        • Petersen E.T.
        • de Vries L.S.
        • van Bel F.
        • Alderliesten T.
        • et al.
        Arterial spin-labelling perfusion MRI and outcome in neonates with hypoxic-ischemic encephalopathy.
        Eur Radiol. 2015; 25: 113-121https://doi.org/10.1007/s00330-014-3352-1
        • Massaro A.N.
        • Bouyssi-Kobar M.
        • Chang T.
        • Vezina L.G.
        • Du Plessis A.J.
        • Limperopoulos C.
        Brain perfusion in encephalopathic newborns after therapeutic hypothermia.
        Am J Neuroradiol. 2013; 34: 1649-1655https://doi.org/10.3174/ajnr.A3422
        • Proisy M.
        • Corouge I.
        • Leghouy A.
        • Nicolas A.
        • Charon V.
        • Mazille N.
        • et al.
        Changes in brain perfusion in successive arterial spin labeling MRI scans in neonates with hypoxic-ischemic encephalopathy.
        NeuroImage Clin. 2019; 24https://doi.org/10.1016/j.nicl.2019.101939
        • Hossmann K.A.
        Reperfusion of the brain after global ischemia: hemodynamic disturbances.
        Shock. 1997; 8: 95-101https://doi.org/10.1097/00024382-199708000-00004
        • Gold L.
        • Lauritzen M.
        Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function.
        Proc Natl Acad Sci U S A. 2002; 99: 7699-7704https://doi.org/10.1073/pnas.112012499
        • Shaikh H.
        • Lechpammer M.
        • Jensen F.E.
        • Warfield S.K.
        • Hansen A.H.
        • Kosaras B.
        • et al.
        Increased brain perfusion persists over the first month of life in term asphyxiated newborns treated with hypothermia: does it reflect activated angiogenesis?.
        Transl Stroke Res. 2015; 6: 224-233https://doi.org/10.1007/s12975-015-0387-9
        • De Vis J.B.
        • Petersen E.T.
        • Kersbergen K.J.
        • Alderliesten T.
        • de Vries L.S.
        • van Bel F.
        • et al.
        Evaluation of perinatal arterial ischemic stroke using noninvasive arterial spin labeling perfusion MRI.
        Pediatr Res. 2013; 74: 307-313https://doi.org/10.1038/pr.2013.111
        • Wintermark P.
        • Warfield S.K.
        New insights in perinatal arterial ischemic stroke by assessing brain perfusion.
        Transl Stroke Res. 2012; 3: 255-262https://doi.org/10.1007/s12975-011-0122-0
        • Watson C.G.
        • Dehaes M.
        • Gagoski B.A.
        • Grant P.E.
        • Rivkin M.J.
        Arterial spin labeling perfusion magnetic resonance imaging performed in acute perinatal stroke reveals hyperperfusion associated with ischemic injury.
        Stroke. 2016; 47: 1514-1519https://doi.org/10.1161/STROKEAHA.115.011936
        • Chalela J.A.
        • Alsop D.C.
        • Gonzalez-Atavales J.B.
        • Maldjian J.A.
        • Kasner S.E.
        • Detre J.A.
        Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling.
        Stroke. 2000; 31: 680-687https://doi.org/10.1161/01.STR.31.3.680
        • van der Aa N.E.
        • Porsius E.D.
        • Hendrikse J.
        • van Kooij B.J.M.
        • Benders M.J.N.L.
        • de Vries L.S.
        • et al.
        Changes in carotid blood flow after unilateral perinatal arterial ischemic stroke.
        Pediatr Res. 2012; 72: 50-56https://doi.org/10.1038/pr.2012.39
        • Viallon M.
        • Altrichter S.
        • Pereira V.M.
        • Nguyen D.
        • Sekoranja L.
        • Federspiel A.
        • et al.
        Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3T.
        Eur Neurol. 2010; 64: 286-296https://doi.org/10.1159/000321162
        • Marchal G.
        • Furlan M.
        • Beaudouin V.
        • Rioux P.
        • Hauttement J.L.
        • Serrati C.
        • et al.
        Early spontaneous hyperperfusion after stroke. A marker of favourable tissue outcome?.
        Brain. 1996; 119: 409-419https://doi.org/10.1093/brain/119.2.409
        • Yu S.
        • Liebeskind D.S.
        • Dua S.
        • Wilhalme H.
        • Elashoff D.
        • Qiao X.J.
        • et al.
        Postischemic hyperperfusion on arterial spin labeled perfusion MRI is linked to hemorrhagic transformation in stroke.
        J Cerebr Blood Flow Metabol. 2015; 35: 630-637https://doi.org/10.1038/jcbfm.2014.238
        • Nagaraj U.D.
        • Evangelou I.E.
        • Donofrio M.T.
        • Vezina L.G.
        • McCarter R.
        • du Plessis A.J.
        • et al.
        Impaired global and regional cerebral perfusion in newborns with complex congenital heart disease.
        J Pediatr. 2015; 167: 1018-1024https://doi.org/10.1016/j.jpeds.2015.08.004
        • Licht D.J.
        • Wang J.
        • Silvestre D.W.
        • Nicolson S.C.
        • Montenegro L.M.
        • Wernovsky G.
        • et al.
        Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects.
        J Thorac Cardiovasc Surg. 2004; 128: 841-849https://doi.org/10.1016/j.jtcvs.2004.07.022
        • Wintermark P.
        • Lechpammer M.
        • Kosaras B.
        • Jensen F.E.
        • Warfield S.K.
        Brain perfusion is increased at term in the white matter of very preterm newborns and newborns with congenital heart disease: does this reflect activated angiogenesis?.
        Neuropediatrics. 2015; 46: 344-351https://doi.org/10.1055/s-0035-1563533
        • Arduini M.
        • Rosati P.
        • Caforio L.
        • Guariglia L.
        • Clerici G.
        • Di Renzo G.C.
        • et al.
        Cerebral blood flow autoregulation and congenital heart disease: possible causes of abnormal prenatal neurologic development.
        J Matern Fetal Neonatal Med. 2011; 24: 1208-1211https://doi.org/10.3109/14767058.2010.547961
        • Mahdi E.S.
        • Bouyssi-Kobar M.
        • Jacobs M.B.
        • Murnick J.
        • Chang T.
        • Limperopoulos C.
        Cerebral perfusion is perturbed by preterm birth and brain injury.
        AJNR Am J Neuroradiol. 2018; 39: 1330-1335https://doi.org/10.3174/ajnr.A5669
        • Fyfe K.L.
        • Yiallourou S.R.
        • Wong F.Y.
        • Horne R.S.C.
        The development of cardiovascular and cerebral vascular control in preterm infants.
        Sleep Med Rev. 2014; 18: 299-310https://doi.org/10.1016/j.smrv.2013.06.002
        • Kang J.H.
        • Yun T.J.
        • Rhim J.K.
        • Cho Y.D.
        • Yoo D.H.
        • Yoo R.E.
        • et al.
        Arterial spin labeling MR imaging aids to identify cortical venous drainage of dural arteriovenous fistulas.
        Med (United States). 2018; 97: e0697https://doi.org/10.1097/MD.0000000000010697
        • Suazo L.
        • Foerster B.
        • Fermin R.
        • Speckter H.
        • Vilchez C.
        • Oviedo J.
        • et al.
        Measurement of blood flow in arteriovenous malformations before and after embolization using arterial spin labeling.
        Intervent Neuroradiol. 2012; 18: 42-48https://doi.org/10.1177/159101991201800106
        • Mamlouk M.D.
        • Hess C.P.
        Arterial spin-labeled perfusion for vascular anomalies in the pediatric head and neck.
        Clin Imag. 2016; 40: 1040-1046https://doi.org/10.1016/j.clinimag.2016.06.009
        • Blauwblomme T.
        • Naggara O.
        • Brunelle F.
        • Grévent D.
        • Puget S.
        • Di Rocco F.
        • et al.
        Arterial spin labeling magnetic resonance imaging: toward noninvasive diagnosis and follow-up of pediatric brain arteriovenous malformations.
        J Neurosurg Pediatr. 2015; 15: 451-458https://doi.org/10.3171/2014.9.PEDS14194