The neonatal liver: Normal development and response to injury and disease

Published:March 12, 2021DOI:https://doi.org/10.1016/j.siny.2021.101229

      Abstract

      The liver emerges from the ventral foregut endoderm around 3 weeks in human and 1 week in mice after fertilization. The fetal liver works as a hematopoietic organ and then develops functions required for performing various metabolic reactions in late fetal and neonatal periods. In parallel with functional differentiation, the liver establishes three dimensional tissue structures. In particular, establishment of the bile excretion system consisting of bile canaliculi of hepatocytes and bile ducts of cholangiocytes is critical to maintain healthy tissue status. This is because hepatocytes produce bile as they functionally mature, and if allowed to remain within the liver tissue can lead to cytotoxicity. In this review, we focus on epithelial tissue morphogenesis in the perinatal period and cholestatic liver diseases caused by abnormal development of the biliary system.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zaret K.S.
        From endoderm to liver bud: paradigms of cell type specification and tissue morphogenesis.
        Curr Top Dev Biol. 2016; 117: 647-669https://doi.org/10.1016/bs.ctdb.2015.12.015
        • Ober E.A.
        • Lemaigre F.P.
        Development of the liver: insights into organ and tissue morphogenesis.
        J Hepatol. 2018 May; 68 (Epub 2018 Jan 13): 1049-1062https://doi.org/10.1016/j.jhep.2018.01.005
        • Sosa-Pineda B.
        • Wigle J.T.
        • Oliver G.
        Hepatocyte migration during liver development requires Prox1.
        Nat Genet. 2000 Jul; 25: 254-255https://doi.org/10.1038/76996
        • Tanimizu N.
        • Miyajima A.
        Molecular mechanism of liver development and regeneration.
        Int Rev Cytol. 2007; 259: 1-48https://doi.org/10.1016/S0074-7696(06)59001-1
        • Bull P.C.
        • Thomas G.R.
        • Rommens J.M.
        • Forbes J.R.
        • Cox D.W.
        The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene.
        Nat Genet. 1993; 5: 327-337https://doi.org/10.1038/ng1293-327
        • Orejuela D.
        • Jorquera R.
        • Bergeron A.
        • Finegold M.J.
        • Tanguay R.M.
        Hepatic stress in hereditary tyrosinemia type 1 (HT1) activates the AKT survival pathway in the fah-/- knockout mice model.
        J Hepatol. 2008 Feb; 48: 308-317https://doi.org/10.1016/j.jhep.2007.09.014
        • Lipiński P.
        • Jurkiewicz D.
        • Ciara E.
        • Płoski R.
        • Więcek S.
        • Bogdańska A.
        • Stradomska T.
        • Socha P.
        • Rokicki D.
        • Tylki-Szymańska A.
        • Jankowska I.
        Neonatal cholestasis due to citrin deficiency: diagnostic pitfalls.
        Acta Biochim Pol. 2020 May 21; 67: 225-228https://doi.org/10.18388/abp.2020_5202
        • Lin W.X.
        • Zeng H.S.
        • Zhang Z.H.
        • Mao M.
        • Zheng Q.Q.
        • Zhao S.T.
        • Cheng Y.
        • Chen F.P.
        • Wen W.R.
        • Song Y.Z.
        Molecular diagnosis of pediatric patients with citrin deficiency in China: SLC25A13 mutation spectrum and the geographic distribution.
        Sci Rep. 2016 Jul 11; 6: 29732https://doi.org/10.1038/srep29732
      1. Bile formation and secretion.
        Boyer JL. Compr Physiol. 2013 Jul; 3: 1035-1078https://doi.org/10.1002/cphy.c120027
        • Morita S.Y.
        • Ikeda Y.
        • Tsuji T.
        • Terada T.
        Molecular mechanisms for protection of hepatocytes against bile salt cytotoxicity.
        Chem Pharm Bull (Tokyo). 2019; 67: 333-340https://doi.org/10.1248/cpb.c18-01029
        • Schmelzer E.
        Hepatic progenitors of the fetal liver: interactions with hematopoietic stem cells.
        Differentiation. 2019 Mar-Apr; 106 (Epub 2019 Feb 22): 9-14https://doi.org/10.1016/j.diff.2019.02.005
        • Popescu D.M.
        • et al.
        Decoding human fetal liver haematopoiesis.
        Nature. 2019 Oct; 574 (Epub 2019 Oct 9): 365-371https://doi.org/10.1038/s41586-019-1652-y
        • Beath S.V.
        Hepatic function and physiology in the newborn.
        Semin Neonatol. 2003 Oct; 8: 337-346https://doi.org/10.1016/S1084-2756(03)00066-6
        • Lemaigre F.P.
        Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases.
        Annu Rev Pathol. 2020 Jan 24; 15: 1-22https://doi.org/10.1146/annurev-pathmechdis-012418-013013
        • Clotman F.
        • Jacquemin P.
        • Plumb-Rudewiez N.
        • Pierreux C.E.
        • Van der Smissen P.
        • Dietz H.C.
        • Courtoy P.J.
        • Rousseau G.G.
        • Lemaigre F.P.
        Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors.
        Genes Dev. 2005 Aug 15; 19: 1849-1854https://doi.org/10.1101/gad.340305
        • Tanimizu N.
        • Miyajima A.
        Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors.
        J Cell Sci. 2004; 117: 3165-3174
        • Zong Y.
        • Panikkar A.
        • Xu J.
        • Antoniou A.
        • Raynaud P.
        • Lemaigre F.
        • Stanger B.Z.
        Notch signaling controls liver development by regulating biliary differentiation.
        Development. 2009; 136: 1727-1739
        • Zhang N.
        • Bai H.
        • David K.K.
        • Dong J.
        • Zheng Y.
        • Cai J.
        • Giovannini M.
        • Liu P.
        • Anders R.A.
        • Pan D.
        The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals.
        Dev Cell. 2010 Jul 20; 19 (PMID: 20643348): 27-38https://doi.org/10.1016/j.devcel.2010.06.015
        • Verboven E.
        • Moya I.M.
        • Sansores-Garcia L.
        • Xie J.
        • Hillen H.
        • Kowalczyk W.
        • Vella G.
        • Verhulst S.
        • Castaldo S.A.
        • Algueró-Nadal A.
        • Romanelli L.
        • Mercader-Celma C.
        • Souza N.A.
        • Soheily S.
        • Van Huffel L.
        • Van Brussel T.
        • Lambrechts D.
        • Roskams T.
        • Lemaigre F.P.
        • Bergers G.
        • van Grunsven L.A.
        • Halder G.
        Regeneration defects in yap and taz mutant mouse livers are caused by bile duct disruption and cholestasis.
        Gastroenterology. 2020 Oct 28; (S0016-5085(20)35324-5)https://doi.org/10.1053/j.gastro.2020.10.035
        • Poncy A.
        • Antoniou A.
        • Cordi S.
        • Pierreux C.E.
        • Jacquemin P.
        • Lemaigre F.P.
        Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts.
        Dev Biol. 2015 Aug 15; 404: 136-148https://doi.org/10.1016/j.ydbio.2015.05.012
        • Fischer E.
        • Legue E.
        • Doyen A.
        • Nato F.
        • Nicolas J.F.
        • Torres V.
        • Yaniv M.
        • Pontoglio M.
        Defective planar cell polarity in polycystic kidney disease.
        Nat Genet. 2006 Jan; 38: 21-23https://doi.org/10.1038/ng1701
        • Tanimizu N.
        • Mitaka T.
        Morphogenesis of liver epithelial cells.
        Hepatol Res. 2016 Sep; 46: 964-976https://doi.org/10.1111/hepr.12654
        • Lemaigre F.P.
        Development of the biliary tract.
        Mech Dev. 2003 Jan; 120: 81-87https://doi.org/10.1016/s0925-4773(02)00334-9
        • Tanimizu N.
        • Kaneko K.
        • Itoh T.
        • Ichinohe N.
        • Ishii M.
        • Mizuguchi T.
        • Hirata K.
        • Miyajima A.
        • Mitaka T.
        Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice.
        Hepatology. 2016 Jul; 64: 175-188https://doi.org/10.1002/hep.28521
        • Antoniou A.
        • Raynaud P.
        • Cordi S.
        • Zong Y.
        • Tronche F.
        • Stanger B.Z.
        • Jacquemin P.
        • Pierreux C.E.
        • Clotman F.
        • Lemaigre F.P.
        Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9.
        Gastroenterology. 2009 Jun; 136: 2325-2333https://doi.org/10.1053/j.gastro.2009.02.051
        • Tanimizu N.
        • Miyajima A.
        • Mostov K.E.
        Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis.
        Mol Biol Cell. 2009 May; 20: 2486-2494https://doi.org/10.1091/mbc.e08-02-0177
        • Walter T.J.
        • Vanderpool C.
        • Cast A.E.
        • Huppert S.S.
        Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj.
        Am J Pathol. 2014 May; 184: 1479-1488https://doi.org/10.1016/j.ajpath.2014.01.030
        • Takashima Y.
        • Terada M.
        • Kawabata M.
        • Suzuki A.
        Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development.
        Hepatology. 2015 Mar; 61: 1003-1011https://doi.org/10.1002/hep.27436
        • Kaneko K.
        • Kamimoto K.
        • Miyajima A.
        • Itoh T.
        Adaptive remodeling of the biliary architecture underlies liver homeostasis.
        Hepatology. 2015 Jun; 61: 2056-2066https://doi.org/10.1002/hep.27685
        • McCright B.
        • Lozier J.
        • Gridley T.
        A mouse model of Alagille syndrome: notch2 as a genetic modifier of Jag1 haploinsufficiency.
        Development. 2002 Feb; 129: 1075-1082
        • Zong Y.
        • Stanger B.Z.
        Molecular mechanisms of bile duct development.
        Int J Biochem Cell Biol. 2011 Feb; 43: 257-264https://doi.org/10.1016/j.biocel.2010.06.020
        • Penton A.L.
        • Leonard L.D.
        • Spinner N.B.
        Notch signaling in human development and disease.
        Semin Cell Dev Biol. 2012 Jun; 23: 450-457https://doi.org/10.1016/j.semcdb.2012.01.010
        • Hofmann J.J.
        • Zovein A.C.
        • Koh H.
        • Radtke F.
        • Weinmaster G.
        Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome.
        Iruela-Arispe ML. Development. 2010 Dec; 137: 4061-4072https://doi.org/10.1242/dev.052118
        • Zong Y.
        • Panikkar A.
        • Xu J.
        • Antoniou A.
        • Raynaud P.
        • Lemaigre F.
        • Stanger B.Z.
        Notch signaling controls liver development by regulating biliary differentiation.
        Development. 2009 May; 136: 1727-1739https://doi.org/10.1242/dev.029140
        • Geisler F.
        • Nagl F.
        • Mazur P.K.
        • Lee M.
        • Zimber-Strobl U.
        • Strobl L.J.
        • Radtke F.
        • Schmid R.M.
        • Siveke J.T.
        Hepatology. Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice.
        2008 Aug: 607-616https://doi.org/10.1002/hep.22381 (vol. 48(2))
        • Tchorz J.S.
        • Kinter J.
        • Müller M.
        • Tornillo L.
        • Heim M.H.
        • Bettler B.
        Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice.
        Hepatology. 2009 Sep; 50: 871-879https://doi.org/10.1002/hep.23048
        • Falix F.A.
        • Weeda V.B.
        • Labruyere W.T.
        • Poncy A.
        • de Waart D.R.
        • Hakvoort T.B.
        • Lemaigre F.
        • Gaemers I.C.
        • Aronson D.C.
        • Lamers W.H.
        Hepatic Notch2 deficiency leads to bile duct agenesis perinatally and secondary bile duct formation after weaning.
        Dev Biol. 2014 Dec 15; 396: 201-213https://doi.org/10.1016/j.ydbio.2014.10.002
        • Fernandez-Barrena M.G.
        • Barcena-Varela M.
        • Banales J.M.
        New evidence supporting the biliary bicarbonate umbrella theory.
        Clin Res Hepatol Gastroenterol. 2017 Mar; 41: 126-128https://doi.org/10.1016/j.clinre.2016.09.004
        • Hatano R.
        • Akiyama K.
        • Tamura A.
        • Hosogi S.
        • Marunaka Y.
        • Caplan M.J.
        • Ueno Y.
        • Tsukita S.
        • Asano S.
        Knockdown of ezrin causes intrahepatic cholestasis by the dysregulation of bile fluidity in the bile duct epithelium in mice.
        Hepatology. 2015 May; 61: 1660-1671https://doi.org/10.1002/hep.27565
        • Benhamouche-Trouillet S.
        • O'Loughlin E.
        • Liu C.H.
        • Polacheck W.
        • Fitamant J.
        • McKee M.
        • El-Bardeesy N.
        • Chen C.S.
        • McClatchey A.I.
        Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis.
        Development. 2018 Apr 30; 145: dev162123https://doi.org/10.1242/dev.162123.PMID:29712669
        • Senga K.
        • Mostov K.E.
        • Mitaka T.
        • Miyajima A.
        • Tanimizu N.
        Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25.
        Mol Biol Cell. 2012 Aug; 23: 2845-2855https://doi.org/10.1091/mbc.E12-02-0097
        • Spence J.R.
        • Lange A.W.
        • Lin S.C.
        • Kaestner K.H.
        • Lowy A.M.
        • Kim I.
        • Whitsett J.A.
        • Wells J.M.
        Sox17 regulates organ lineage segregation of ventral foregut progenitor cells.
        Dev Cell. 2009 Jul; 17: 62-74https://doi.org/10.1016/j.devcel.2009.05.012
        • Keplinger K.M.
        • Bloomston M.
        Anatomy and embryology of the biliary tract.
        Surg Clin. 2014 Apr; 94: 203-217https://doi.org/10.1016/j.suc.2014.01.001
        • Sumazaki R.
        • Shiojiri N.
        • Isoyama S.
        • Masu M.
        • Keino-Masu K.
        • Osawa M.
        • Nakauchi H.
        • Kageyama R.
        • Matsui A.
        Conversion of biliary system to pancreatic tissue in Hes1-deficient mice.
        Nat Genet. 2004 Jan; 36: 83-87https://doi.org/10.1038/ng1273
        • Hunter 1 Michael P.
        • Christine M Wilson
        • Jiang Xiaobing
        • Cong Rong
        • Vasavada Hemaxi
        • Kaestner Klaus H.
        Clifford W Bogue the homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis.
        Dev Biol. 2007 Aug 15; 308 (Epub 2007 May 25): 355-367https://doi.org/10.1016/j.ydbio.2007.05.028
        • Dong P.D.
        • Munson C.A.
        • Norton W.
        • Crosnier C.
        • Pan X.
        • Gong Z.
        • Neumann C.J.
        • Stainier D.Y.
        Fgf10 regulates hepatopancreatic ductal system patterning and differentiation.
        Nat Genet. 2007 Mar; 39: 397-402https://doi.org/10.1038/ng1961
        • Manfroid I.
        • Ghaye A.
        • Naye F.
        • Detry N.
        • Palm S.
        • Pan L.
        • Ma T.P.
        • Huang W.
        • Rovira M.
        • Martial J.A.
        • Parsons M.J.
        • Moens C.B.
        • Voz M.L.
        • Peers B.
        Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration.
        Dev Biol. 2012 Jun 15; 366: 268-278https://doi.org/10.1016/j.ydbio.2012.04.002
        • Uemura M.
        • Ozawa A.
        • Nagata T.
        • Kurasawa K.
        • Tsunekawa N.
        • Nobuhisa I.
        • Taga T.
        • Hara K.
        • Kudo A.
        • Kawakami H.
        • Saijoh Y.
        • Kurohmaru M.
        • Kanai-Azuma M.
        • Kanai Y.
        Sox17 haploinsufficiency results in perinatal biliary atresia and hepatitis in C57BL/6 background mice.
        Development. 2013 Feb 1; 140: 639-648https://doi.org/10.1242/dev.086702
        • Kalinichenko V.V.
        • Zhou Y.
        • Bhattacharyya D.
        • Kim W.
        • Shin B.
        • Bambal K.
        • Costa R.H.
        Haploinsufficiency of the mouse Forkhead Box f1 gene causes defects in gall bladder development.
        J Biol Chem. 2002 Apr 5; 277: 12369-12374https://doi.org/10.1074/jbc.M112162200
        • Yamashita R.
        • Takegawa Y.
        • Sakumoto M.
        • Nakahara M.
        • Kawazu H.
        • Hoshii T.
        • Araki K.
        • Yokouchi Y.
        • Yamamura K.
        Defective development of the gall bladder and cystic duct in Lgr4- hypomorphic mice.
        Dev Dynam. 2009 Apr; 238: 993-1000https://doi.org/10.1002/dvdy.21900
        • Mendive F.
        • Laurent P.
        • Van Schoore G.
        • Skarnes W.
        • Pochet R.
        • Vassart G.
        Defective postnatal development of the male reproductive tract in LGR4 knockout mice.
        Dev Biol. 2006 Feb 15; 290 (Epub 2006 Jan 9): 421-434https://doi.org/10.1016/j.ydbio.2005.11.043
        • Cardinale V.
        • Wang Y.
        • Carpino G.
        • Mendel G.
        • Alpini G.
        • Gaudio E.
        • Reid L.M.
        • Alvaro D.
        The biliary tree--a reservoir of multipotent stem cells.
        Nat Rev Gastroenterol Hepatol. 2012 Feb 28; 9: 231-240https://doi.org/10.1038/nrgastro.2012.23
        • Matsui S.
        • Harada K.
        • Miyata N.
        • Okochi H.
        • Miyajima A.
        • Tanaka M.
        Characterization of peribiliary gland-constituting cells based on differential expression of trophoblast cell surface protein 2 in biliary tract.
        Am J Pathol. 2018 Sep; 188: 2059-2073https://doi.org/10.1016/j.ajpath.2018.05.016
        • Jensen K.J.
        • Alpini G.
        • Glaser S.
        Hepatic nervous system and neurobiology of the liver.
        Comp Physiol. 2013 Apr; 3: 655-665https://doi.org/10.1002/cphy.c120018
        • I Balemba O.B.
        • Salter M.J.
        • Mawe G.M.
        Nnervation of the extrahepatic biliary tract.
        Anat Rec A Discov Mol Cell Evol Biol. 2004 Sep; 280: 836-847https://doi.org/10.1002/ar.a.20089
        • Tanimizu N.
        • Ichinohe N.
        • Mitaka T.
        Intrahepatic bile ducts guide establishment of the intrahepatic nerve network in developing and regenerating mouse liver.
        Development. 2018 Apr 25; 145: dev159095https://doi.org/10.1242/dev.159095
        • Nedvetsky P.I.
        • Emmerson E.
        • Finley J.K.
        • Ettinger A.
        • Cruz-Pacheco N.
        • Prochazka J.
        • Haddox C.L.
        • Northrup E.
        • Hodges C.
        • Mostov K.E.
        • Hoffman M.P.
        • Knox S.M.
        Parasympathetic innervation regulates tubulogenesis in the developing salivary gland.
        Dev Cell. 2014 Aug 25; 30: 449-462https://doi.org/10.1016/j.devcel.2014.06.012
        • Woodland P.
        • Aktar R.
        • Mthunzi E.
        • Lee C.
        • Peiris M.
        • Preston S.L.
        • Blackshaw L.A.
        • Sifrim D.
        Distinct afferent innervation patterns within the human proximal and distal esophageal mucosa.
        Am J Physiol Gastrointest Liver Physiol. 2015 Mar 15; 308: G525-G531https://doi.org/10.1152/ajpgi.00175.2014
        • Sato A.
        • Kakinuma S.
        • Miyoshi M.
        • Kamiya A.
        • Tsunoda T.
        • Kaneko S.
        • Tsuchiya J.
        • Shimizu T.
        • Takeichi E.
        • Nitta S.
        • Kawai-Kitahata F.
        • Murakawa M.
        • Itsui Y.
        • Nakagawa M.
        • Azuma S.
        • Koshikawa N.
        • Seiki M.
        • Nakauchi H.
        • Asahina Y.
        • Watanabe M.
        Vasoactive intestinal peptide derived from liver mesenchymal cells mediates tight junction assembly in mouse intrahepatic bile ducts.
        Hepatol Commun. 2019 Dec 24; 4: 235-254https://doi.org/10.1002/hep4.1459
        • Iwai M.
        • Miyashita T.
        • Shimazu T.
        Eur J Biochem. Inhibition of glucose production during hepatic nerve stimulation in regenerating rat liver perfused in situ.
        Possible involvement of gap junctions in the action of sympathetic nerves. 1991 Aug 15; 200: 69-74https://doi.org/10.1111/j.1432-1033.1991.tb21049.x
        • Treyer A.
        • Müsch A.
        Hepatocyte polarity.
        Comp Physiol. 2013 Jan; 3: 243-287https://doi.org/10.1002/cphy.c120009
        • Overeem A.W.
        • Bryant D.M.
        • van IJzendoorn S.C.
        Mechanisms of apical-basal axis orientation and epithelial lumen positioning.
        Trends Cell Biol. 2015 Aug; 25: 476-485https://doi.org/10.1016/j.tcb.2015.04.002
        • Hadj-Rabia S.
        • Baala L.
        • Vabres P.
        • Hamel-Teillac D.
        • Jacquemin E.
        • Fabre M.
        • Lyonnet S.
        • De Prost Y.
        • Munnich A.
        • Hadchouel M.
        • Smahi A.
        Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease.
        Gastroenterology. 2004 Nov; 127: 1386-1390https://doi.org/10.1053/j.gastro.2004.07.022
        • Grosse B.
        • Cassio D.
        • Yousef N.
        • Bernardo C.
        • Jacquemin E.
        • Gonzales E.
        Claudin-1 involved in neonatal ichthyosis sclerosing cholangitis syndrome regulates hepatic paracellular permeability.
        Hepatology. 2012 Apr; 55 (Epub 2012 Mar 1): 1249-1259https://doi.org/10.1002/hep.24761
        • Kikuchi S.
        • Hata M.
        • Fukumoto K.
        • Yamane Y.
        • Matsui T.
        • Tamura A.
        • Yonemura S.
        • Yamagishi H.
        • Keppler D.
        • Tsukita S.
        • Tsukita S.
        Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes.
        Nat Genet. 2002 Jul; 31: 320-325https://doi.org/10.1038/ng905
        • Woods A.
        • Heslegrave A.J.
        • Muckett P.J.
        • Levene A.P.
        • Clements M.
        • Mobberley M.
        • Ryder T.A.
        • Abu-Hayyeh S.
        • Williamson C.
        • Goldin R.D.
        • Ashworth A.
        • Withers D.J.
        • Carling D.
        LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice.
        Biochem J. 2011 Feb 15; 434: 49-60https://doi.org/10.1042/BJ20101721
        • Kamiya A.
        • Kinoshita T.
        • Ito Y.
        • Matsui T.
        • Morikawa Y.
        • Senba E.
        • Nakashima K.
        • Taga T.
        • Yoshida K.
        • Kishimoto T.
        • Miyajima A.
        Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer.
        EMBO J. 1999 Apr 15; 18: 2127-2136https://doi.org/10.1093/emboj/18.8.2127
        • Kojima N.
        • Kinoshita T.
        • Kamiya A.
        • Nakamura K.
        • Nakashima K.
        • Taga T.
        • Miyajima A.
        Cell density-dependent regulation of hepatic development by a gp130-independent pathway.
        Biochem Biophys Res Commun. 2000 Oct 14; 277: 152-158https://doi.org/10.1006/bbrc.2000.3635
      2. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: induction of tryptophan oxygenase.

        • Kamiya A.
        • Kojima N.
        • Kinoshita T.
        • Sakai Y.
        • Miyaijma A.
        Hepatology. 2002 Jun; 35: 1351-1359https://doi.org/10.1053/jhep.2002.33331
        • Matsui T.
        • Kinoshita T.
        • Morikawa Y.
        • Tohya K.
        • Katsuki M.
        • Ito Y.
        • Kamiya A.
        • Miyajima A.
        K-Ras mediates cytokine-induced formation of E-cadherin-based adherens junctions during liver development.
        EMBO J. 2002 Mar 1; 21: 1021-1030https://doi.org/10.1093/emboj/21.5.1021
        • Tanimizu N.
        • Nakamura Y.
        • Ichinohe N.
        • Mizuguchi T.
        • Hirata K.
        • Mitaka T.
        Hepatic biliary epithelial cells acquire epithelial integrity but lose plasticity to differentiate into hepatocytes in vitro during development.
        J Cell Sci. 2013 Nov 15; 126: 5239-5246https://doi.org/10.1242/jcs.133082
        • Li Q.
        • Zhang Y.
        • Pluchon P.
        • Robens J.
        • Herr K.
        • Mercade M.
        • Thiery J.P.
        • Yu H.
        • Viasnoff V.
        Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension.
        Nat Cell Biol. 2016 Mar; 18: 311-318https://doi.org/10.1038/ncb3310
        • Cohen D.
        • Rodriguez-Boulan E.
        • Müsch A.
        Par-1 promotes a hepatic mode of apical protein trafficking in MDCK cells.
        Proc Natl Acad Sci U S A. 2004 Sep 21; 101: 13792-13797https://doi.org/10.1073/pnas.0403684101
        • Cohen D.
        • Brennwald P.J.
        • Rodriguez-Boulan E.
        • Müsch A.
        Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton.
        J Cell Biol. 2004 Mar 1; 164: 717-727https://doi.org/10.1083/jcb.200308104
        • Lázaro-Diéguez F.
        • Cohen D.
        • Fernandez D.
        • Hodgson L.
        • van Ijzendoorn S.C.D.
        • Müsch A.
        Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes.
        J Cell Biol. 2013; 203: 251-264https://doi.org/10.1083/jcb.201303013
        • Slim C.L.
        • Lázaro-Diéguez F.
        • Bijlard M.
        • Toussaint M.J.
        • de Bruin A.
        • Du Q.
        • Müsch A.
        • van Ijzendoorn S.C.
        Par1b induces asymmetric inheritance of plasma membrane domains via LGN-dependent mitotic spindle orientation in proliferating hepatocytes.
        PLoS Biol. 2013 Dec; 11e1001739https://doi.org/10.1371/journal.pbio.1001739
        • Slim C.L.
        • van IJzendoorn S.C.
        • Lázaro-Diéguez F.
        • Müsch A.
        The special case of hepatocytes: unique tissue architecture calls for a distinct mode of cell division.
        BioArchitecture. 2014 Mar-Apr; 4: 47-52https://doi.org/10.4161/bioa.29012
        • Cohen D.
        • Fernandez D.
        • Lázaro-Diéguez F.
        • Müsch A.
        The serine/threonine kinase Par1b regulates epithelial lumen polarity via IRSp53-mediated cell-ECM signaling.
        J Cell Biol. 2011; 192: 525-540https://doi.org/10.1083/jcb.201007002
        • Fu D.
        • Wakabayashi Y.
        • Lippincott-Schwartz J.
        • Arias I.M.
        Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEK-LKB1-AMPK pathway.
        Proc Natl Acad Sci U S A. 2011 Jan 25; 108: 1403-1408https://doi.org/10.1073/pnas.1018376108
        • Overeem A.W.
        • Klappe K.
        • Parisi S.
        • Klöters-Planchy P.
        • Mataković L.
        • du Teil Espina M.
        • Drouin C.A.
        • Weiss K.H.
        • van IJzendoorn S.C.D.
        Pluripotent stem cell-derived bile canaliculi-forming hepatocytes to study genetic liver diseases involving hepatocyte polarity.
        J Hepatol. 2019 Aug; 71: 344-356https://doi.org/10.1016/j.jhep.2019.03.031
      3. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. . Li T, apte U.
        Adv Pharmacol. 2015; 74: 263-302https://doi.org/10.1016/bs.apha.2015.04.003
      4. Neonatal jaundice: aetiology, diagnosis and treatment. Mitra S, Rennie J.
        Br J Hosp Med. 2017 Dec 2; 78: 699-704https://doi.org/10.12968/hmed.2017.78.12.699
        • Feldman A.G.
        • Sokol R.J.
        Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics.
        Nat Rev Gastroenterol Hepatol. 2019 Jun; 16: 346-360https://doi.org/10.1038/s41575-019-0132-z
        • Jancelewicz T.
        • Barmherzig R.
        • Chung C.T.
        • Ling S.C.
        • Kamath B.M.
        • Ng V.L.
        • Amaral J.
        • O'Connor C.
        • Fecteau A.
        • Langer J.C.
        A screening algorithm for the efficient exclusion of biliary atresia in infants with cholestatic jaundice.
        J Pediatr Surg. 2015 Mar; 50: 363-370https://doi.org/10.1016/j.jpedsurg.2014.08.014
        • Shagrani M.
        • Burkholder J.
        • Broering D.
        • Abouelhoda M.
        • Faquih T.
        • El-Kalioby M.
        • Subhani S.N.
        • Goljan E.
        • Albar R.
        • Monies D.
        • Mazhar N.
        • AlAbdulaziz B.S.
        • Abdelrahman K.A.
        • Altassan N.
        • Alkuraya F.S.
        Genetic profiling of children with advanced cholestatic liver disease.
        Clin Genet. 2017 Jul; 92: 52-61https://doi.org/10.1111/cge.12959
        • Kamath B.M.
        • Stein P.
        • Houwen R.H.J.
        • Verkade H.J.
        Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis.
        Liver Int. 2020 Aug; 40 (Epub 2020 Jun 22): 1812-1822https://doi.org/10.1111/liv.14553
        • Larson L.
        • James M.
        • Gossard A.
        Cholestatic liver injury: care of patients with primary biliary cholangitis or primary sclerosing cholangitis.
        AACN Adv Crit Care. 2016 Oct; 27: 441-452https://doi.org/10.4037/aacnacc2016202
        • Raynaud P.
        • Carpentier R.
        • Antoniou A.
        • Lemaigre F.P.
        Biliary differentiation and bile duct morphogenesis in development and disease.
        Int J Biochem Cell Biol. 2011 Feb; 43: 245-256https://doi.org/10.1016/j.biocel.2009.07.020
        • Mašek J.
        • Andersson E.R.
        The developmental biology of genetic Notch disorders.
        Development. 2017 May 15; 144: 1743-1763https://doi.org/10.1242/dev.148007
        • Tanimizu N.
        • Mitaka T.
        Epithelial morphogenesis during liver development.
        Cold Spring Harb Perspect Biol. 2017 Aug 1; 9: a027862https://doi.org/10.1101/cshperspect.a027862
        • Grochowski C.M.
        • Loomes K.M.
        • Spinner N.B.
        Jagged1 (JAG1): structure, expression, and disease associations.
        Gene. 2016 Jan 15; 576 (Epub 2015 Nov 6): 381-384https://doi.org/10.1016/j.gene.2015.10.065
        • Li L.
        • Krantz I.D.
        • Deng Y.
        • Genin A.
        • Banta A.B.
        • Collins C.C.
        • Qi M.
        • Trask B.J.
        • Kuo W.L.
        • Cochran J.
        • Costa T.
        • Pierpont M.E.
        • Rand E.B.
        • Piccoli D.A.
        • Hood L.
        • Spinner N.B.
        Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1.
        Nat Genet. 1997 Jul; 16: 243-251https://doi.org/10.1038/ng0797-243
        • Oda T.
        • Elkahloun A.G.
        • Pike B.L.
        • Okajima K.
        • Krantz I.D.
        • Genin A.
        • Piccoli D.A.
        • Meltzer P.S.
        • Spinner N.B.
        • Collins F.S.
        • Chandrasekharappa S.C.
        Mutations in the human Jagged1 gene are responsible for Alagille syndrome.
        Nat Genet. 1997 Jul; 16: 235-242https://doi.org/10.1038/ng0797-235
        • McDaniell R.
        • Warthen D.M.
        • Sanchez-Lara P.A.
        • Pai A.
        • Krantz I.D.
        • Piccoli D.A.
        • Spinner N.B.
        NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway.
        Am J Hum Genet. 2006 Jul; 79: 169-173https://doi.org/10.1086/505332.Epub.2006.May.10
        • Ananthakrishnan A.N.
        • Saeian K.
        Caroli's disease: identification and treatment strategy.
        Curr Gastroenterol Rep. 2007 Apr; 9: 151-155https://doi.org/10.1007/s11894-007-0010-7
        • de Miranda Henriques M.S.
        • de Morais Villar E.J.
        The liver and polycystic kidney disease.
        in: Li X. Polycystic kidney disease [internet]. Codon Publications, Brisbane (AU)2015 Nov ([Chapter 17])
        • Radhakrishnan P.
        • Nayak S.S.
        • Shukla A.
        • Lindstrand A.
        • Girisha K.M.
        Meckel syndrome: clinical and mutation profile in six fetuses.
        Clin Genet. 2019 Dec; 96 (Epub 2019 Aug 21): 560-565https://doi.org/10.1111/cge.13623
        • Berauer J.P.
        • Mezina A.I.
        • Okou D.T.
        • Sabo A.
        • Muzny D.M.
        • Gibbs R.A.
        • Hegde M.R.
        • Chopra P.
        • Cutler D.J.
        • Perlmutter D.H.
        • Bull L.N.
        • Thompson R.J.
        • Loomes K.M.
        • Spinner N.B.
        • Rajagopalan R.
        • Guthery S.L.
        • Moore B.
        • Yandell M.
        • Harpavat S.
        • Magee J.C.
        • Kamath B.M.
        • Molleston J.P.
        • Bezerra J.A.
        • Murray K.F.
        • Alonso E.M.
        • Rosenthal P.
        • Squires R.H.
        • Wang K.S.
        • Finegold M.J.
        • Russo P.
        • Sherker A.H.
        • Sokol R.J.
        • Karpen S.J.
        Childhood liver disease research network (ChiLDReN). Identification of polycystic kidney disease 1 like 1 gene variants in children with biliary atresia splenic malformation syndrome.
        Hepatology. 2019 Sep; 70 (Epub 2019 Mar 21): 899-910https://doi.org/10.1002/hep.30515
        • Grammatikopoulos T.
        • Sambrotta M.
        • Strautnieks S.
        • Foskett P.
        • Knisely A.S.
        • Wagner B.
        • Deheragoda M.
        • Starling C.
        • Mieli-Vergani G.
        • Smith J.
        University of Washington Center for Mendelian Genomics, Bull L, Thompson RJ. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis.
        J Hepatol. 2016 Dec; 65 (Epub 2016 Jul 25): 1179-1187https://doi.org/10.1016/j.jhep.2016.07.017
        • Asai A.
        • Miethke A.
        • Bezerra J.A.
        Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes.
        Nat Rev Gastroenterol Hepatol. 2015 Jun; 12: 342-352https://doi.org/10.1038/nrgastro.2015.74
        • Lakshminarayanan B.
        • Davenport M.
        J Biliary atresia: a comprehensive review.
        Autoimmunity. 2016 Sep; 73 (Epub 2016 Jun 23): 1-9https://doi.org/10.1016/j.jaut.2016.06.005
        • Vuković J.
        • Grizelj R.
        • Bojanić K.
        • Corić M.
        • Luetić T.
        • Batinica S.
        • Kujundžić-Tiljak M.
        • Schroeder D.R.
        • Sprung J.
        Ductal plate malformation in patients with biliary atresia.
        Eur J Pediatr. 2012 Dec; 171: 1799-1804https://doi.org/10.1007/s00431-012-1820-7
        • Makin E.
        • Davenport M.
        Bilairy atresia and other causes of surgicaljaundice in infancy.
        in: Kelly D.A. Diseases of the liver and biliary system in children, 4thedn. John Wiley & Sons Ltd, 2017: 413-429
        • Muise A.M.
        • Turner D.
        • Wine E.
        • Kim P.
        • Marcon M.
        • Ling S.C.
        Biliary atresia with choledochal cyst: implications for classification.
        Clin Gastroenterol Hepatol. 2006 Nov; 4: 1411-1414https://doi.org/10.1016/j.cgh.2006.07.005
        • Zani A.
        • Quaglia A.
        • Hadzić N.
        • Zuckerman M.
        • Davenport M.
        Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup.
        J Pediatr Surg. 2015 Oct; 50: 1739-1745https://doi.org/10.1016/j.jpedsurg.2015.03.001
        • Li J.
        • Bessho K.
        • Shivakumar P.
        • Mourya R.
        • Mohanty S.K.
        • Dos Santos J.L.
        • Miura I.K.
        • Porta G.
        • Bezerra J.A.
        Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype.
        J Clin Invest. 2011 Nov; 121: 4244-4256https://doi.org/10.1172/JCI57728
        • Mohanty S.K.
        • Donnelly B.
        • Temple H.
        • Tiao G.M.
        A rotavirus-induced mouse model to study biliary atresia and neonatal cholestasis.
        Methods Mol Biol. 2019; 1981: 259-271https://doi.org/10.1007/978-1-4939-9420-5_17
        • Jafri M.
        • Donnelly B.
        • Allen S.
        • Bondoc A.
        • McNeal M.
        • Rennert P.D.
        • Weinreb P.H.
        • Ward R.
        • Tiao G.
        Cholangiocyte expression of alpha2beta1-integrin confers susceptibility to rotavirus-induced experimental biliary atresia.
        Am J Physiol Gastrointest Liver Physiol. 2008 Jul; 295: G16-G26https://doi.org/10.1152/ajpgi.00442.2007
        • Barnes B.H.
        • Tucker R.M.
        • Wehrmann F.
        • Mack D.G.
        • Ueno Y.
        • Mack C.L.
        Cholangiocytes as immune modulators in rotavirus-induced murine biliary atresia.
        Liver Int. 2009 Sep; 29: 1253-1261https://doi.org/10.1111/j.1478-3231.2008.01921.x
        • Jee J.
        • Mourya R.
        • Shivakumar P.
        • Fei L.
        • Wagner M.
        • Bezerra J.A.
        Cxcr2 signaling and the microbiome suppress inflammation, bile duct injury, and the phenotype of experimental biliary atresia.
        PloS One. 2017 Aug 1; 12e0182089https://doi.org/10.1371/journal.pone.0182089.eCollection.2017
        • Mohanty S.K.
        • Ivantes C.A.
        • Mourya R.
        • Pacheco C.
        • Bezerra J.A.
        Macrophages are targeted by rotavirus in experimental biliary atresia and induce neutrophil chemotaxis by ip2/Cxcl2.
        Pediatr Res. 2010 Apr; 67: 345-351https://doi.org/10.1203/PDR.0b013e3181d22a73
        • Saxena V.
        • Shivakumar P.
        • Sabla G.
        • Mourya R.
        • Chougnet C.
        • Bezerra J.A.
        Dendritic cells regulate natural killer cell activation and epithelial injury in experimental biliary atresia.
        Sci Transl Med. 2011 Sep 28; 3: 102ra94https://doi.org/10.1126/scitranslmed.3002069
        • Squires J.E.
        • Shivakumar P.
        • Mourya R.
        • Bessho K.
        • Walters S.
        • Bezerra J.A.
        Natural killer cells promote long-term hepatobiliary inflammation in a low-dose rotavirus model of experimental biliary atresia.
        PloS One. 2015 May 19; 10 (e0127191)https://doi.org/10.1371/journal.pone.0127191.eCollection.2015
        • Zheng S.
        • Zhang H.
        • Zhang X.
        • Peng F.
        • Chen X.
        • Yang J.
        • Brigstock D.
        • Feng J.
        CD8+ T lymphocyte response against extrahepatic biliary epithelium is activated by epitopes within NSP4 in experimental biliary atresia.
        Am J Physiol Gastrointest Liver Physiol. 2014 Jul 15; 307: G233-G240https://doi.org/10.1152/ajpgi.00099.2014
        • Shivakumar P.
        • Sabla G.
        • Mohanty S.
        • McNeal M.
        • Ward R.
        • Stringer K.
        • Caldwell C.
        • Chougnet C.
        • Bezerra J.A.
        Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia.
        Gastroenterology. 2007 Jul; 133: 268-277https://doi.org/10.1053/j.gastro.2007.04.031
        • Mack C.L.
        • Tucker R.M.
        • Sokol R.J.
        • Karrer F.M.
        • Kotzin B.L.
        • Whitington P.F.
        • Miller S.D.
        Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation.
        Pediatr Res. 2004 Jul; 56: 79-87https://doi.org/10.1203/01.PDR.0000130480.51066.FB
        • Li J.
        • Bessho K.
        • Shivakumar P.
        • Mourya R.
        • Mohanty S.K.
        • Dos Santos J.L.
        • Miura I.K.
        • Porta G.
        • Bezerra J.A.
        Th2 signals induce epithelial injury in mice and are compatible with the biliary atresia phenotype.
        J Clin Invest. 2011 Nov; 121: 4244-4256https://doi.org/10.1172/JCI57728
        • Li J.
        • Razumilava N.
        • Gores G.J.
        • Walters S.
        • Mizuochi T.
        • Mourya R.
        • Bessho K.
        • Wang Y.H.
        • Glaser S.S.
        • Shivakumar P.
        • Bezerra J.A.
        Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation.
        J Clin Invest. 2014 Jul; 124: 3241-3251https://doi.org/10.1172/JCI73742
        • Patman G.
        Biliary tract. IL-33, innate lymphoid cells and IL-13 are required for cholangiocyte proliferation.
        Nat Rev Gastroenterol Hepatol. 2014 Aug; 11: 456https://doi.org/10.1038/nrgastro.2014.101
        • Nakagawa H.
        • Suzuki N.
        • Hirata Y.
        • Hikiba Y.
        • Hayakawa Y.
        • Kinoshita H.
        • Ihara S.
        • Uchino K.
        • Nishikawa Y.
        • Ijichi H.
        • Otsuka M.
        • Arita J.
        • Sakamoto Y.
        • Hasegawa K.
        • Kokudo N.
        • Tateishi K.
        • Koike K.
        Biliary epithelial injury-induced regenerative response by IL-33 promotes cholangiocarcinogenesis from peribiliary glands.
        Proc Natl Acad Sci U S A. 2017 May 9; 114: E3806-E3815https://doi.org/10.1073/pnas.1619416114
        • Higashiyama H.
        • Ozawa A.
        • Sumitomo H.
        • Uemura M.
        • Fujino K.
        • Igarashi H.
        • Imaimatsu K.
        • Tsunekawa N.
        • Hirate Y.
        • Kurohmaru M.
        • Saijoh Y.
        • Kanai-Azuma M.
        • Kanai Y.
        Embryonic cholecystitis and defective gallbladder contraction in the Sox17-haploinsufficient mouse model of biliary atresia.
        Development. 2017 May 15; 144: 1906-1917https://doi.org/10.1242/dev.147512
        • Zhou L.
        • Shan Q.
        • Tian W.
        • Wang Z.
        • Liang J.
        • Xie X.
        Ultrasound for the diagnosis of biliary atresia: a meta-analysis.
        Am J Roentgenol. 2016; 206: W73-W82https://doi.org/10.2214/AJR.15.15336
        • Uemura M.
        • Higashi M.
        • Pattarapanawan M.
        • Takami S.
        • Ichikawa N.
        • Higashiyama H.
        • Furukawa T.
        • Fujishiro J.
        • Fukumura Y.
        • Yao T.
        • Tajiri T.
        • Kanai-Azuma M.
        • Kanai Y.
        Gallbladder wall abnormality in biliary atresia of mouse Sox17 (+/-) neonates and human infants.
        Dis Model Mech. 2020 Apr 3; 13dmm042119https://doi.org/10.1242/dmm.042119
        • Chiang J.Y.
        Bile acid metabolism and signaling.
        Comp Physiol. 2013 Jul; 3: 1191-1212https://doi.org/10.1002/cphy.c120023
        • Arab J.P.
        • Cabrera D.
        • Arrese M.
        Bile acids in cholestasis and its treatment.
        Ann Hepatol. 2017 Nov; 16 (s3-105): s53-s57https://doi.org/10.5604/01.3001.0010.5497
        • Russell D.W.
        The enzymes, regulation, and genetics of bile acid synthesis.
        Annu Rev Biochem. 2003; 72: 137-174https://doi.org/10.1146/annurev.biochem.72.121801.161712
        • Bull L.N.
        • Thompson R.J.
        Progressive familial intrahepatic cholestasis.
        Clin Liver Dis. 2018; 22 (Hepatology . 2020 Jul;72(1):213-229): 657-669https://doi.org/10.1002/hep.31002
        • Qiu Y.L.
        • Gong J.Y.
        • Feng J.Y.
        • Wang R.X.
        • Han J.
        • Liu T.
        • et al.
        Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ‐glutamyltransferase cholestasis.
        Hepatology. 2017; 65: 1655‐1669
        • Gunaydin M.
        • Bozkurter Cil A.T.
        Progressive familial intrahepatic cholestasis: diagnosis, management, and treatment.
        Hepat Med. 2018 Sep 10; 10: 95-104https://doi.org/10.2147/HMER.S137209.eCollection.2018
        • Paulusma C.C.
        • Folmer D.E.
        • Ho-Mok K.S.
        • de Waart D.R.
        • Hilarius P.M.
        • Verhoeven A.J.
        • Oude Elferink R.P.
        ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity.
        Hepatology. 2008 Jan; 47: 268-278https://doi.org/10.1002/hep.21950
        • Gordo-Gilart R.
        • Andueza S.
        • Hierro L.
        • Martínez-Fernández P.
        • D'Agostino D.
        • Jara P.
        • Alvarez L.
        Functional analysis of ABCB4 mutations relates clinical outcomes of progressive familial intrahepatic cholestasis type 3 to the degree of MDR3 floppase activity.
        Gut. 2015 Jan; 64: 147-155https://doi.org/10.1136/gutjnl-2014-306896
        • Groen A.
        • Romero M.R.
        • Kunne C.
        • Hoosdally S.J.
        • Dixon P.H.
        • Wooding C.
        • Williamson C.
        • Seppen J.
        • Van den Oever K.
        • Mok K.S.
        • Paulusma C.C.
        • Linton K.J.
        • Oude Elferink R.P.
        Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity.
        Gastroenterology. 2011 Nov; 141 (e1-4): 1927-1937https://doi.org/10.1053/j.gastro.2011.07.042
        • Ananthanarayanan M.
        • Li Y.
        PFIC2 and ethnicity-specific bile salt export pump (BSEP, ABCB11) mutations: where do we go from here?.
        Liver Int. 2010 Jul; 30: 777-779https://doi.org/10.1111/j.1478-3231.2010.02227.x
        • Gonzales E.
        • Grosse B.
        • Schuller B.
        • Davit-Spraul A.
        • Conti F.
        • Guettier C.
        • Cassio D.
        • Jacquemin E.
        Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: evidence for improvement of cholestasis with 4-phenylbutyrate.
        Hepatology. 2015 Aug; 62: 558-566https://doi.org/10.1002/hep.27767
        • Shin D.J.
        • Wang L.
        Bile acid-activated receptors: a review on FXR and other nuclear receptors.
        Handb Exp Pharmacol. 2019; 256: 51-72https://doi.org/10.1007/164_2019_236
        • Overeem A.W.
        • Li Q.
        • Qiu Y.L.
        • Cartón-García F.
        • Leng C.
        • Klappe K.
        • Dronkers J.
        • Hsiao N.H.
        • Wang J.S.
        • Arango D.
        • van Ijzendoorn S.C.D.
        A molecular mechanism underlying genotype-specific intrahepatic cholestasis resulting from MYO5B mutations.
        Hepatology. 2020 Jul; 72: 213-229https://doi.org/10.1002/hep.31002
        • Wakabayashi Y.
        • Dutt P.
        • Lippincott-Schwartz J.
        • Arias I.M.
        Rab11a and myosin Vb are required for bile canalicular formation in WIF-B9 cells.
        Proc Natl Acad Sci U S A. 2005 Oct 18; 102: 15087-15092https://doi.org/10.1073/pnas.0503702102
        • Hanley J.
        • Dhar D.K.
        • Mazzacuva F.
        • Fiadeiro R.
        • Burden J.J.
        • Lyne A.M.
        • Smith H.
        • Straatman-Iwanowska A.
        • Banushi B.
        • Virasami A.
        • Mills K.
        • Lemaigre F.P.
        • Knisely A.S.
        • Howe S.
        • Sebire N.
        • Waddington S.N.
        • Paulusma C.C.
        • Clayton P.
        • Gissen P.
        Vps33b is crucial for structural and functional hepatocyte polarity.
        J Hepatol. 2017 May; 66: 1001-1011https://doi.org/10.1016/j.jhep.2017.01.001
        • Kaneko K.
        • Kamimoto K.
        • Miyajima A.
        • Itoh T.
        Adaptive remodeling of the biliary architecture underlies liver homeostasis.
        Hepatology. 2015 Jun; 61: 2056-2066https://doi.org/10.1002/hep.27685
        • Kamimoto K.
        • Nakano Y.
        • Kaneko K.
        • Miyajima A.
        • Itoh T.
        Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction.
        Commun Biol. 2020 Jun 5; 3: 289https://doi.org/10.1038/s42003-020-1006-1
        • Sato K.
        • Marzioni M.
        • Meng F.
        • Francis H.
        • Glaser S.
        • Alpini G.
        Ductular reaction in liver diseases: pathological mechanisms and translational significances.
        Hepatology. 2019 Jan; 69: 420-430https://doi.org/10.1002/hep.30150
        • Kamimoto K.
        • Kaneko K.
        • Kok C.Y.
        • Okada H.
        • Miyajima A.
        • Itoh T.
        Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling.
        Elife. 2016 Jul 19; 5e15034https://doi.org/10.7554/eLife.15034
        • Miyajima A.
        • Tanaka M.
        • Itoh T.
        Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming.
        Cell Stem Cell. 2014 May 1; 14: 561-574https://doi.org/10.1016/j.stem.2014.04.010
        • Español-Suñer R.
        • Carpentier R.
        • Van Hul N.
        • Legry V.
        • Achouri Y.
        • Cordi S.
        • Jacquemin P.
        • Lemaigre F.
        • Leclercq I.A.
        Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice.
        Gastroenterology. 2012 Dec; 143 (e7): 1564-1575https://doi.org/10.1053/j.gastro.2012.08.024
        • Gadd V.L.
        • Aleksieva N.
        • Forbes S.J.
        Epithelial plasticity during liver injury and regeneration.
        Cell Stem Cell. 2020 Oct 1; 27: 557-573https://doi.org/10.1016/j.stem.2020.08.016
        • Yanger K.
        • Knigin D.
        • Zong Y.
        • Maggs L.
        • Gu G.
        • Akiyama H.
        • Pikarsky E.
        • Stanger B.Z.
        Adult hepatocytes are generated by self-duplication rather than stem cell differentiation.
        Cell Stem Cell. 2014 Sep 4; 15: 340-349https://doi.org/10.1016/j.stem.2014.06.003
        • Tarlow B.D.
        • Pelz C.
        • Naugler W.E.
        • Wakefield L.
        • Wilson E.M.
        • Finegold M.J.
        • Grompe M.
        Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes.
        Cell Stem Cell. 2014 Nov 6; 15: 605-618https://doi.org/10.1016/j.stem.2014.09.008
        • Tanimizu N.
        • Nishikawa Y.
        • Ichinohe N.
        • Akiyama H.
        • Mitaka T.
        Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM-) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration.
        J Biol Chem. 2014 Mar 14; 289: 7589-7598https://doi.org/10.1074/jbc.M113.517243
        • Schaub J.R.
        • Huppert K.A.
        • Kurial S.N.T.
        • Hsu B.Y.
        • Cast A.E.
        • Donnelly B.
        • Karns R.A.
        • Chen F.
        • Rezvani M.
        • Luu H.Y.
        • Mattis A.N.
        • Rougemont A.L.
        • Rosenthal P.
        • Huppert S.S.
        • Willenbring H.
        De novo formation of the biliary system by TGFbeta-mediated hepatocyte transdifferentiation.
        Nature. 2018 May; 557: 247-251https://doi.org/10.1038/s41586-018-0075-5
        • Raven A.
        • Lu W.Y.
        • Man T.Y.
        • Ferreira-Gonzalez S.
        • O'Duibhir E.
        • Dwyer B.J.
        • Thomson J.P.
        • Meehan R.R.
        • Bogorad R.
        • Koteliansky V.
        • Kotelevtsev Y.
        • Ffrench-Constant C.
        • Boulter L.
        • Forbes S.J.
        Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration.
        Nature. 2017 Jul 20; 547: 350-354https://doi.org/10.1038/nature23015
        • Fausto N.
        • Campbell J.S.
        • Riehle K.J.
        Liver regeneration.
        Hepatology. 2006 Feb; 43: S45-S53https://doi.org/10.1002/hep.20969
        • Yanger K.
        • Zong Y.
        • Maggs L.R.
        • Shapira S.N.
        • Maddipati R.
        • Aiello N.M.
        • Thung S.N.
        • Wells R.G.
        • Greenbaum L.E.
        • Stanger B.Z.
        Robust cellular reprogramming occurs spontaneously during liver regeneration.
        Genes Dev. 2013 Apr 1; 27: 719-724https://doi.org/10.1101/gad.207803.112
        • Sekiya S.
        • Suzuki A.
        Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver.
        Am J Pathol. 2014 May; 184: 1468-1478https://doi.org/10.1016/j.ajpath.2014.01.005
        • Fan B.
        • Malato Y.
        • Calvisi D.F.
        • Naqvi S.
        • Razumilava N.
        • Ribback S.
        • Gores G.J.
        • Dombrowski F.
        • Evert M.
        • Chen X.
        • Willenbring H.
        Cholangiocarcinomas can originate from hepatocytes in mice.
        J Clin Invest. 2012 Aug; 122: 2911-2915https://doi.org/10.1172/JCI63212
        • Yimlamai D.
        • Christodoulou C.
        • Galli G.G.
        • Yanger K.
        • Pepe-Mooney B.
        • Gurung B.
        • Shrestha K.
        • Cahan P.
        • Stanger B.Z.
        • Camargo F.D.
        Hippo pathway activity influences liver cell fate.
        Cell. 2014 Jun 5; 157: 1324-1338https://doi.org/10.1016/j.cell.2014.03.060
        • Walter T.J.
        • Vanderpool C.
        • Cast A.E.
        • Huppert S.S.
        Intrahepatic bile duct regeneration in mice does not require Hnf6 or Notch signaling through Rbpj.
        Am J Pathol. 2014 May; 184 (Epub 2014 Mar 13): 1479-1488https://doi.org/10.1016/j.ajpath.2014.01.030
        • Andersson E.R.
        • Chivukula I.V.
        • Hankeova S.
        • Sjöqvist M.
        • Tsoi Y.L.
        • Ramsköld D.
        • Masek J.
        • Elmansuri A.
        • Hoogendoorn A.
        • Vazquez E.
        • Storvall H.
        • Netušilová J.
        • Huch M.
        • Fischler B.
        • Ellis E.
        • Contreras A.
        • Nemeth A.
        • Chien K.C.
        • Clevers H.
        • Sandberg R.
        • Bryja V.
        • Lendahl U.
        Mouse model of Alagille syndrome and mechanisms of Jagged1 missense mutations.
        Gastroenterology. 2018 Mar; 154: 1080-1095https://doi.org/10.1053/j.gastro.2017.11.002
        • Wu F.
        • Wu D.
        • Ren Y.
        • Huang Y.
        • Feng B.
        • Zhao N.
        • Zhang T.
        • Chen X.
        • Chen S.
        • Xu A.
        Generation of hepatobiliary organoids from human induced pluripotent stem cells.
        J Hepatol. 2019 Jun; 70: 1145-1158https://doi.org/10.1016/j.jhep.2018.12.028
        • Ramli M.N.B.
        • Lim Y.S.
        • Koe C.T.
        • Demircioglu D.
        • Tng W.
        • Gonzales K.A.U.
        • Tan C.P.
        • Szczerbinska I.
        • Liang H.
        • Soe E.L.
        • Lu Z.
        • Ariyachet C.
        • Yu K.M.
        • Koh S.H.
        • Yaw L.P.
        • Jumat N.H.B.
        • Lim J.S.Y.
        • Wright G.
        • Shabbir A.
        • Dan Y.Y.
        • Ng H.H.
        • Chan Y.S.
        Human pluripotent stem cell-derived organoids as models of liver disease.
        Gastroenterology. 2020 Oct; 159 (e12): 1471-1486https://doi.org/10.1053/j.gastro.2020.06.010