Insights into the mechanisms of alveolarization - Implications for lung regeneration and cell therapies

  • Maria Hurskainen
    Correspondence
    Corresponding author. New Children's Hospital, Department of Pediatric Cardiology, Stenbäckinkatu 9, 00290, Helsinki, Finland.
    Affiliations
    Division of Pediatric Cardiology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland

    Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
    Search for articles by this author
  • Chanèle Cyr-Depauw
    Affiliations
    Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
  • Bernard Thébaud
    Affiliations
    Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

    Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, Ontario, Canada
    Search for articles by this author
Published:March 29, 2021DOI:https://doi.org/10.1016/j.siny.2021.101243

      Abstract

      Although the lung has extensive regenerative capacity, some diseases affecting the distal lung result in irreversible loss of pulmonary alveoli. Hitherto, treatments are supportive and do not specifically target tissue repair. Regenerative medicine offers prospects to promote lung repair and regeneration. The neonatal lung may be particularly receptive, because of its growth potential, compared to the adult lung. Based on our current understanding of neonatal lung injury, the ideal therapeutic approach includes mitigation of inflammation and fibrosis, and induction of regenerative signals. Cell-based therapies have shown potential to prevent and reverse impaired lung development. Their mechanisms of action suggest effects on both, mitigating the pathophysiological processes and promoting lung growth. Here, we review our current understanding of normal and impaired alveolarization, provide some rationale for the use of cell-based therapies and summarize current evidence for the therapeutic potential of cell-based therapies for pulmonary regeneration in preterm infants.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Northway W.H.
        • Rosan R.C.
        • Porter D.Y.
        Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia.
        N Engl J Med. 1967; 276: 357-368https://doi.org/10.1056/NEJM196702162760701
        • Thébaud B.
        • Goss K.N.
        • Laughon M.
        • et al.
        Bronchopulmonary dysplasia.
        Nat Rev Dis Prim. 2019; 5: 78https://doi.org/10.1038/s41572-019-0127-7
        • Goss K.N.
        • Beshish A.G.
        • Barton G.P.
        • et al.
        Early pulmonary vascular disease in young adults born preterm.
        Am J Respir Crit Care Med. 2018; 198: 1549-1558https://doi.org/10.1164/rccm.201710-2016OC
        • Cassady S.J.
        • Lasso-Pirot A.
        • Deepak J.
        Phenotypes of bronchopulmonary dysplasia in adults.
        Chest. 2020; 158: 2074-2081https://doi.org/10.1016/j.chest.2020.05.553
        • Hansmann G.
        • Koestenberger M.
        • Alastalo T.-P.
        • et al.
        Updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: the European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.
        J Heart Lung Transplant. 2019; 38 (2019): 879-901https://doi.org/10.1016/j.healun.2019.06.022
        • Mestan K.K.
        • Gotteiner N.
        • Porta N.
        • Grobman W.
        • Su E.J.
        • Ernst L.M.
        Cord blood biomarkers of placental maternal vascular underperfusion predict bronchopulmonary dysplasia-associated pulmonary hypertension.
        J Pediatr. 2017; 185: 33-41https://doi.org/10.1016/j.jpeds.2017.01.015
        • Jacob A.
        • Vedaie M.
        • Roberts D.A.
        • et al.
        Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells.
        Nat Protoc. 2019; 14: 3303-3332https://doi.org/10.1038/s41596-019-0220-0
        • Macosko E.Z.
        • Basu A.
        • Satija R.
        • et al.
        Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets.
        Cell. 2015; 161: 1202-1214https://doi.org/10.1016/j.cell.2015.05.002
        • Merritt C.R.
        • Ong G.T.
        • Church S.E.
        • et al.
        Multiplex digital spatial profiling of proteins and RNA in fixed tissue.
        Nat Biotechnol. 2020; 38: 586-599https://doi.org/10.1038/s41587-020-0472-9
        • Mižíková I.
        • Thébaud B.
        Looking at the developing lung in single-cell resolution.
        Am J Physiol Cell Mol Physiol. November. 2020; (ajplung.00385): 2020https://doi.org/10.1152/ajplung.00385.2020
        • Schittny J.C.
        Development of the lung.
        Cell Tissue Res. 2017; 367: 427-444https://doi.org/10.1007/s00441-016-2545-0
        • Lau M.
        • Masood A.
        • Yi M.
        • Belcastro R.
        • Li J.
        • Tanswell A.K.
        Long-term failure of alveologenesis after an early short-term exposure to a PDGF-receptor antagonist.
        Am J Physiol Cell Mol Physiol. 2011; 300: L534-L547https://doi.org/10.1152/ajplung.00262.2010
        • Tsao P.-N.
        • Matsuoka C.
        • Wei S.-C.
        • et al.
        Epithelial Notch signaling regulates lung alveolar morphogenesis and airway epithelial integrity.
        Proc Natl Acad Sci Unit States Am. 2016; 113: 8242-8247https://doi.org/10.1073/pnas.1511236113
        • Boström H.
        • Willetts K.
        • Pekny M.
        • et al.
        PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis.
        Cell. 1996; 85: 863-873https://doi.org/10.1016/S0092-8674(00)81270-2
        • Dabovic B.
        • Chen Y.
        • Choi J.
        • et al.
        Control of lung development by latent TGF-β binding proteins.
        J Cell Physiol. 2011; 226: 1499-1509https://doi.org/10.1002/jcp.22479
        • Thébaud B.
        • Abman S.H.
        Bronchopulmonary Dysplasia: where have all the vessels gone? Roles of angiogenic factors in chronic lung disease.
        Am J Respir Crit Care Med. 2007; 175: 978-985https://doi.org/10.1164/rccm.200611-1660PP
        • Sweeney M.
        • Foldes G.
        It takes two: endothelial-perivascular cell cross-talk in vascular development and disease.
        Front Cardiovasc Med. 2018; 5https://doi.org/10.3389/fcvm.2018.00154
        • Yang J.
        • Hernandez B.J.
        • Martinez Alanis D.
        • et al.
        The development and plasticity of alveolar type 1 cells.
        Development. 2016; 143: 54-65https://doi.org/10.1242/dev.130005
        • Cohen M.
        • Giladi A.
        • Gorki A.-D.
        • et al.
        Lung single-cell signaling interaction map reveals basophil role in macrophage imprinting.
        Cell. 2018; 175 (e18): 1031-1044https://doi.org/10.1016/j.cell.2018.09.009
        • Balany J.
        • Bhandari V.
        Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia.
        Front Med. 2015; 2https://doi.org/10.3389/fmed.2015.00090
        • Oak P.
        • Hilgendorff A.
        The BPD trio? Interaction of dysregulated PDGF, VEGF, and TGF signaling in neonatal chronic lung disease.
        Mol Cell Pediatr. 2017; 4: 11https://doi.org/10.1186/s40348-017-0076-8
        • Alysandratos K.-D.
        • Herriges M.J.
        • Kotton D.N.
        Epithelial stem and progenitor cells in lung repair and regeneration.
        Annu Rev Physiol. 2021; 83 (annurev-physiol-041520-092904)https://doi.org/10.1146/annurev-physiol-041520-092904
        • Peng T.
        • Frank D.B.
        • Kadzik R.S.
        • et al.
        Hedgehog actively maintains adult lung quiescence and regulates repair and regeneration.
        Nature. 2015; 526: 578-582https://doi.org/10.1038/nature14984
        • Ståhl P.L.
        • Salmén F.
        • Vickovic S.
        • et al.
        Visualization and analysis of gene expression in tissue sections by spatial transcriptomics.
        Science. 2016; 353 (80): 78-82https://doi.org/10.1126/science.aaf2403
        • Alexander M.J.
        • Budinger G.R.S.
        • Reyfman P.A.
        Breathing fresh air into respiratory research with single-cell RNA sequencing.
        Eur Respir Rev. 2020; 29: 200060https://doi.org/10.1183/16000617.0060-2020
        • Hurskainen M.
        • Mižíková I.
        • Cook D.P.
        • et al.
        Single cell transcriptomic analysis of murine lung development on hyperoxia-induced damage.
        Nat Commun. 2021; 12: 1565https://doi.org/10.1038/s41467-021-21865-2
        • Travaglini K.J.
        • Nabhan A.N.
        • Penland L.
        • et al.
        A molecular cell atlas of the human lung from single-cell RNA sequencing.
        Nature. 2020; 587: 619-625https://doi.org/10.1038/s41586-020-2922-4
        • Naik S.
        • Larsen S.B.
        • Cowley C.J.
        • Fuchs E.
        Two to tango: dialog between immunity and stem cells in health and disease.
        Cell. 2018; 175: 908-920https://doi.org/10.1016/j.cell.2018.08.071
        • Saluzzo S.
        • Gorki A.-D.
        • Rana B.M.J.
        • et al.
        First-breath-induced type 2 pathways shape the lung immune environment.
        Cell Rep. 2017; 18: 1893-1905https://doi.org/10.1016/j.celrep.2017.01.071
        • Joshi N.
        • Walter J.M.
        • Misharin A.V.
        Alveolar macrophages.
        Cell Immunol. 2018; 330: 86-90https://doi.org/10.1016/j.cellimm.2018.01.005
        • Eldredge L.C.
        • Treuting P.M.
        • Manicone A.M.
        • Ziegler S.F.
        • Parks W.C.
        • McGuire J.K.
        CD11b + mononuclear cells mitigate hyperoxia-induced lung injury in neonatal mice.
        Am J Respir Cell Mol Biol. 2016; 54: 273-283https://doi.org/10.1165/rcmb.2014-0395OC
        • Lechner A.J.
        • Driver I.H.
        • Lee J.
        • et al.
        Recruited monocytes and type 2 immunity promote lung regeneration following pneumonectomy.
        Cell Stem Cell. 2017; 21 (e7): 120-134https://doi.org/10.1016/j.stem.2017.03.024
        • Domingo-Gonzalez R.
        • Zanini F.
        • Che X.
        • et al.
        Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution.
        Elife. 2020; 9https://doi.org/10.7554/eLife.56890
        • Collins J.J.P.
        • Lithopoulos M.A.
        • dos Santos C.C.
        • et al.
        Impaired angiogenic supportive capacity and altered gene expression profile of resident CD146 + mesenchymal stromal cells isolated from hyperoxia-injured neonatal rat lungs.
        Stem Cell Dev. 2018; 27: 1109-1124https://doi.org/10.1089/scd.2017.0145
        • Möbius M.A.
        • Freund D.
        • Vadivel A.
        • et al.
        Oxygen disrupts human fetal lung mesenchymal cells. Implications for bronchopulmonary dysplasia.
        Am J Respir Cell Mol Biol. 2019; 60: 592-600https://doi.org/10.1165/rcmb.2018-0358OC
        • Zepp J.A.
        • Zacharias W.J.
        • Frank D.B.
        • et al.
        Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung.
        Cell. 2017; 170 (e10): 1134-1148https://doi.org/10.1016/j.cell.2017.07.034
        • Lee J.-H.
        • Tammela T.
        • Hofree M.
        • et al.
        Anatomically and functionally distinct lung mesenchymal populations marked by Lgr5 and Lgr6.
        Cell. 2017; 170 (e12): 1149-1163https://doi.org/10.1016/j.cell.2017.07.028
        • Chung M.-I.
        • Bujnis M.
        • Barkauskas C.E.
        • Kobayashi Y.
        • Hogan B.L.M.
        Niche-mediated BMP/SMAD signaling regulates lung alveolar stem cell proliferation and differentiation.
        Development. 2018; 145: dev163014https://doi.org/10.1242/dev.163014
        • Hagan A.S.
        • Zhang B.
        • Ornitz D.M.
        Identification of a FGF18-expressing alveolar myofibroblast that is developmentally cleared during alveologenesis.
        Development. 2020; 147 (dev181032)https://doi.org/10.1242/dev.181032
        • Li R.
        • Bernau K.
        • Sandbo N.
        • Gu J.
        • Preissl S.
        • Sun X.
        Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response.
        Elife. 2018; 7https://doi.org/10.7554/eLife.36865
        • Desai T.J.
        • Brownfield D.G.
        • Krasnow M.A.
        Alveolar progenitor and stem cells in lung development, renewal and cancer.
        Nature. 2014; 507: 190-194https://doi.org/10.1038/nature12930
        • Jain R.
        • Barkauskas C.E.
        • Takeda N.
        • et al.
        Plasticity of Hopx+ type I alveolar cells to regenerate type II cells in the lung.
        Nat Commun. 2015; 6: 6727https://doi.org/10.1038/ncomms7727
        • Nabhan A.N.
        • Brownfield D.G.
        • Harbury P.B.
        • Krasnow M.A.
        • Desai T.J.
        Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells.
        Science. 2018; 359 (80): 1118-1123https://doi.org/10.1126/science.aam6603
        • Yee M.
        • David Cohen E.
        • Haak J.
        • Dylag A.M.
        • O'Reilly M.A.
        Neonatal hyperoxia enhances age-dependent expression of SARS-CoV-2 receptors in mice.
        Sci Rep. 2020; 10: 22401https://doi.org/10.1038/s41598-020-79595-2
        • Yee M.
        • Domm W.
        • Gelein R.
        • et al.
        Alternative progenitor lineages regenerate the adult lung depleted of alveolar epithelial type 2 cells.
        Am J Respir Cell Mol Biol. 2017; 56: 453-464https://doi.org/10.1165/rcmb.2016-0150OC
        • Ding B.-S.
        • Nolan D.J.
        • Guo P.
        • et al.
        Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization.
        Cell. 2011; 147: 539-553https://doi.org/10.1016/j.cell.2011.10.003
        • Alphonse R.S.
        • Vadivel A.
        • Fung M.
        • et al.
        Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth.
        Circulation. 2014; 129: 2144-2157https://doi.org/10.1161/CIRCULATIONAHA.114.009124
        • Gillich A.
        • Zhang F.
        • Farmer C.G.
        • et al.
        Capillary cell-type specialization in the alveolus.
        Nature. 2020; 586: 785-789https://doi.org/10.1038/s41586-020-2822-7
        • Huang S.X.L.
        • Islam M.N.
        • O'Neill J.
        • et al.
        Efficient generation of lung and airway epithelial cells from human pluripotent stem cells.
        Nat Biotechnol. 2014; 32: 84-91https://doi.org/10.1038/nbt.2754
        • Jacob A.
        • Morley M.
        • Hawkins F.
        • et al.
        Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells.
        Cell Stem Cell. 2017; 21: 472-488https://doi.org/10.1016/j.stem.2017.08.014
        • Miller A.J.
        • Dye B.R.
        • Ferrer-Torres D.
        • et al.
        Generation of lung organoids from human pluripotent stem cells in vitro.
        Nat Protoc. 2019; 14: 518-540https://doi.org/10.1038/s41596-018-0104-8
        • Zepp J.A.
        • Morrisey E.E.
        Cellular crosstalk in the development and regeneration of the respiratory system.
        Nat Rev Mol Cell Biol. 2019; 20: 551-566https://doi.org/10.1038/s41580-019-0141-3
        • Chen Y.-W.
        • Huang S.X.
        • de Carvalho A.L.R.T.
        • et al.
        A three-dimensional model of human lung development and disease from pluripotent stem cells.
        Nat Cell Biol. 2017; 19: 542-549https://doi.org/10.1038/ncb3510
        • Friedenstein A.J.
        • Chailakhyan R.K.
        • Latsinik N.V.
        • Panasyuk A.F.
        • Keiliss-Borok I.V.
        Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo.
        Transplantation. 1974; 17: 331-340https://doi.org/10.1097/00007890-197404000-00001
        • Caplan A.I.
        Mesenchymal stem cells.
        J Orthop Res. 1991; 9: 641-650https://doi.org/10.1002/jor.1100090504
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317https://doi.org/10.1080/14653240600855905
        • Sipp D.
        • Robey P.G.
        • Turner L.
        Clear up this stem-cell mess.
        Nature. 2018; 561: 455-457https://doi.org/10.1038/d41586-018-06756-9
        • Aslam M.
        • Baveja R.
        • Liang O.D.
        • et al.
        Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease.
        Am J Respir Crit Care Med. 2009; 180: 1122-1130https://doi.org/10.1164/rccm.200902-0242OC
        • van Haaften T.
        • Byrne R.
        • Bonnet S.
        • et al.
        Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats.
        Am J Respir Crit Care Med. 2009; 180: 1131-1142https://doi.org/10.1164/rccm.200902-0179OC
        • Chang Y.S.
        • Oh W.
        • Choi S.J.
        • et al.
        Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats.
        Cell Transplant. 2009; 18: 869-886https://doi.org/10.3727/096368909X471189
        • Tian Z.
        • DU J.
        • Wang B.
        • Hong X.
        • Feng Z.
        [Intravenous infusion of rat bone marrow-derived mesenchymal stem cells ameliorates hyperoxia-induced lung injury in neonatal rats].
        Nan Fang Yi Ke Da Xue Xue Bao. 2007; 27: 1692-1695
        • Augustine S.
        • Avey M.T.
        • Harrison B.
        • et al.
        Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: systematic review and meta-analysis of preclinical studies.
        Stem Cells Transl Med. 2017; 6: 2079-2093https://doi.org/10.1002/sctm.17-0126
        • Pierro M.
        • Ionescu L.
        • Montemurro T.
        • et al.
        Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia.
        Thorax. 2013; 68: 475-484https://doi.org/10.1136/thoraxjnl-2012-202323
        • Lesage F.
        • Thébaud B.
        Nanotherapies for micropreemies: stem cells and the secretome in bronchopulmonary dysplasia.
        Semin Perinatol. 2018; 42: 453-458https://doi.org/10.1053/j.semperi.2018.09.007
        • Willis G.R.
        • Fernandez-Gonzalez A.
        • Anastas J.
        • et al.
        Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation.
        Am J Respir Crit Care Med. 2018; 197: 104-116https://doi.org/10.1164/rccm.201705-0925OC
        • Emukah C.
        • Dittmar E.
        • Naqvi R.
        • et al.
        Mesenchymal stromal cell conditioned media for lung disease: a systematic review and meta-analysis of preclinical studies.
        Respir Res. 2019; 20: 239https://doi.org/10.1186/s12931-019-1212-x
        • Lau A.N.
        • Goodwin M.
        • Kim C.F.
        • Weiss D.J.
        Stem cells and regenerative medicine in lung biology and diseases.
        Mol Ther. 2012; 20: 1116-1130https://doi.org/10.1038/mt.2012.37
        • Al-Rubaie A.
        • Wise A.F.
        • Sozo F.
        • et al.
        The therapeutic effect of mesenchymal stem cells on pulmonary myeloid cells following neonatal hyperoxic lung injury in mice.
        Respir Res. 2018; 19: 114https://doi.org/10.1186/s12931-018-0816-x
        • Chaubey S.
        • Thueson S.
        • Ponnalagu D.
        • et al.
        Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6.
        Stem Cell Res Ther. 2018; 9: 173https://doi.org/10.1186/s13287-018-0903-4
        • Kim M.
        • Kwon J.H.
        • Bae Y.K.
        • et al.
        Soluble PTX3 of human umbilical cord blood-derived mesenchymal stem cells attenuates hyperoxic lung injury by activating macrophage polarization in neonatal rat model.
        Stem Cell Int. 2020; 2020: 1-18https://doi.org/10.1155/2020/1802976
        • Sun C.
        • Zhang S.
        • Wang J.
        • et al.
        EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis.
        Aging (Albany NY). 2019; 11: 2477-2487https://doi.org/10.18632/aging.101937
        • Chang Y.S.
        • Ahn S.Y.
        • Jeon H.B.
        • et al.
        Critical role of vascular endothelial growth factor secreted by mesenchymal stem cells in hyperoxic lung injury.
        Am J Respir Cell Mol Biol. 2014; 51: 391-399https://doi.org/10.1165/rcmb.2013-0385OC
        • Reiter J.
        • Drummond S.
        • Sammour I.
        • et al.
        Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia.
        Respir Res. 2017; 18: 137https://doi.org/10.1186/s12931-017-0620-z
        • Zhang X.
        • Wang H.
        • Shi Y.
        • et al.
        Role of bone marrow-derived mesenchymal stem cells in the prevention of hyperoxia-induced lung injury in newborn mice.
        Cell Biol Int. 2012; 36: 589-594https://doi.org/10.1042/CBI20110447
        • Yao L.
        • Liu C.
        • Luo Q.
        • et al.
        Protection against hyperoxia-induced lung fibrosis by KGF-induced MSCs mobilization in neonatal rats.
        Pediatr Transplant. August 2013; (n/a-n/a)https://doi.org/10.1111/petr.12133
        • Waszak P.
        • Alphonse R.
        • Vadivel A.
        • Ionescu L.
        • Eaton F.
        • Thébaud B.
        Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats.
        Stem Cell Dev. 2012; 21: 2789-2797https://doi.org/10.1089/scd.2010.0566
        • Zhang Q.
        • Lai D.
        Application of human amniotic epithelial cells in regenerative medicine: a systematic review.
        Stem Cell Res Ther. 2020; 11: 439https://doi.org/10.1186/s13287-020-01951-w
        • Murphy S.
        • Lim R.
        • Dickinson H.
        • et al.
        Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function.
        Cell Transplant. 2011; 20: 909-924https://doi.org/10.3727/096368910X543385
        • Vosdoganes P.
        • Wallace E.M.
        • Chan S.T.
        • Acharya R.
        • Moss T.J.M.
        • Lim R.
        Human amnion epithelial cells repair established lung injury.
        Cell Transplant. 2013; 22: 1337-1349https://doi.org/10.3727/096368912X657657
        • Vosdoganes P.
        • Hodges R.J.
        • Lim R.
        • et al.
        Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep.
        Am J Obstet Gynecol. 2011; 205 (156.e26-33)https://doi.org/10.1016/j.ajog.2011.03.054
        • Chang Y.S.
        • Ahn S.Y.
        • Yoo H.S.
        • et al.
        Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial.
        J Pediatr. 2014; 164 (e6): 966-972https://doi.org/10.1016/j.jpeds.2013.12.011
        • Ahn S.Y.
        • Chang Y.S.
        • Kim J.H.
        • Sung S.I.
        • Park W.S.
        Two-year follow-up outcomes of premature infants enrolled in the phase I trial of mesenchymal stem cells transplantation for bronchopulmonary dysplasia.
        J Pediatr. 2017; 185: 49-54https://doi.org/10.1016/j.jpeds.2017.02.061
        • Powell S.B.
        • Silvestri J.M.
        Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants.
        J Pediatr. 2019; 210: 209-213https://doi.org/10.1016/j.jpeds.2019.02.029
        • Lim R.
        • Malhotra A.
        • Tan J.
        • et al.
        First‐in‐human administration of allogeneic amnion cells in premature infants with bronchopulmonary dysplasia: a safety study.
        Stem Cells Transl Med. 2018; 7: 628-635https://doi.org/10.1002/sctm.18-0079