Advertisement

Clinical decision support in the neonatal ICU

Published:March 31, 2022DOI:https://doi.org/10.1016/j.siny.2022.101332

      Abstract

      Clinical Decision Support (CDS) tools help the healthcare team diagnose, monitor, and treat patients more efficiently and consistently by executing clinical practice guidelines and recommendations. As a result, CDS has a direct impact on the delivery and healthcare outcomes. This review covers the fundamental concepts, as well as the infrastructure needed to create a CDS tool and examples of its use in the neonatal setting. This article also serves as a primer on what to think about when proposing the development of a new CDS tool, or when upgrading an existing one. We also highlight important elements that influence CDS development, such as informatics methodologies, data and device interoperability, and regulation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balas E.A.
        • Boren S.A.
        Managing clinical knowledge for health care improvement.
        Yearbk. Med. Inform. 2000; 9 (0): 65-70https://doi.org/10.1055/s-0038-1637943
        • Institute of Medicine
        Committee on quality of health care in America. Crossing the quality chasm: a new health system for the 21st century.
        National Academies Press, 2001
        • Osheroff Jerome
        • Jonathan Teich
        • et al.
        Improving outcomes with clinical decision support: an implementer’s guide.
        HIMSS. 2012; 2nd Editionhttps://doi.org/10.4324/9780367806125
        • Wang J.
        • Ju R.
        • Chen Y.
        • Liu G.
        • Yi Z.
        Automated diagnosis of neonatal encephalopathy on aEEG using deep neural networks.
        Neurocomputing. 2020; 398: 95-107https://doi.org/10.1016/j.neucom.2020.01.057
        • Liu L.
        • Chen W.
        • Cao G.
        Prediction of neonatal amplitude-integrated EEG based on LSTM method. 2016 IEEE international conference on bioinformatics and biomedicine (BIBM).
        • Malak J.S.
        • Zeraati H.
        • Nayeri F.S.
        • Safdari R.
        • Shahraki A.D.
        Neonatal intensive care decision support systems using artificial intelligence techniques: a systematic review.
        Artif Intell Rev. 2019; 52: 2685-2704https://doi.org/10.1007/s10462-018-9635-1
        • Frymoyer A.
        • Stockmann C.
        • Hersh A.L.
        • Goswami S.
        • Keizer R.J.
        Individualized empiric vancomycin dosing in neonates using a model-based approach.
        J. Pediatric. Infect. Dis Soc. 2019; 8: 97-104
        • Chen W.
        • Wang Y.
        • Cao G.
        • Chen G.
        • Gu Q.
        A random forest model based classification scheme for neonatal amplitude-integrated EEG. Biomed Eng Online.
        Suppl. 2014; 2: S4
        • Frize M.
        • Walker R.
        Clinical decision-support systems for intensive care units using case-based reasoning.
        Med Eng Phys. 2000; 22: 671-677
        • Khan S.A.
        Comparison of mortality prediction models for neonatal intensive care patients using artificial neural networks and case-based reasoning.
        2006
        • Petersen J.D.
        • Lozovatsky M.
        • Markovic D.
        • Duncan R.
        • Zheng S.
        • Shamsian A.
        • et al.
        Clinical decision support for hyperbilirubinemia risk assessment in the electronic health record.
        Acad Pediatr. 2020; 20: 857-862
        • Turner S.
        • Informatics L.
        • Org S.T.
        (at) L. BiliToolTM.
        https://bilitool.org/
        Date accessed: October 31, 2021
        • Frize M.
        • Bariciak E.
        • Gilchrist J.
        Physician-PArent decision-support for neonatal intensive care.
        Stud Health Technol Inf. 2013; 192 (PPADS): 23-27
        • Heermann L.K.
        • Thompson C.B.
        Prototype expert system to assist with the stabilization of neonates prior to transport.
        Proc AMIA Annu Fall Symp. 1997; : 213-217
        • Misgna H.
        • Ahmed M.
        • Kumar A.
        MatES: web-based forward chaining expert system for maternal care.
        arXiv:2106.09281 [cs.AI]. 2021; https://doi.org/10.48550/arXiv.2106.09281
        • Miksch S.
        • Dobner M.
        • Horn W.
        • Popow C.
        An expert system for parenteral nutrition of neonates.
        (VIE-PNN)in: Proceedings of 9th IEEE conference on artificial intelligence for applications. 1993: 285-291 (ieeexplore.ieee.org)
        • Alonso A.
        • Moret V.
        • Hernandez C.
        Development of an adviser system for foetal diagnosis during labour.
        in: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society. vol. 3. 1988: 1355-1357 (ieeexplore.ieee.org)
        • Westbury C.F.
        Bayes' rule for clinicians: an introduction.
        Front Psychol. 2010; 1: 192
        • Warner H.R.
        • Toronto A.F.
        • Veasey L.G.
        • Stephenson R.
        A mathematical approach to medical diagnosis. Application to congenital heart disease.
        JAMA. 1961; 177: 177-183
        • Tasa T.
        • Metsvaht T.
        • Kalamees R.
        • Vilo J.
        • Lutsar I.
        DosOpt: a tool for personalized bayesian dose adjustment of vancomycin in neonates.
        Ther Drug Monit. 2017; 39: 604-613
        • Jeremic A.
        • Tan K.
        Predicting the length of stay using Bayesian model selection for Neonatal heart rate monitoring. 31st IASTED International Conference on Modelling, Identification, and Control.
        MIC 2011, actapress.com. 2011; : 406-410
        • Aleem I.S.
        • Schemitsch E.H.
        • Hanson B.P.
        What is a clinical decision analysis study?.
        Indian J Orthop. 2008; 42: 137-139
        • Gilchrist J.
        • Ennett C.M.
        • Frize M.
        • Bariciak E.
        Neonatal mortality prediction using real-time medical measurements.
        IEEE Int. Sympos. Med. Measure. Appl. 2011; (ieeexplore.ieee.org): 65-70
        • Jalali A.
        • Licht D.J.
        • Nataraj C.
        Application of decision tree in the prediction of periventricular leukomalacia (PVL) occurrence in neonates after heart surgery.
        Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 5931-5934
        • Neamțu B.M.
        • Visa G.
        • Maniu I.
        • Ognean M.L.
        • Pérez-Elvira R.
        • Dragomir A.
        • et al.
        A decision-tree approach to assist in forecasting the outcomes of the neonatal brain injury.
        Int J Environ Res Publ Health. 2021; 18https://doi.org/10.3390/ijerph18094807
        • Thakur J.
        • Pahuja S.K.
        • Pahuja R.
        Performance comparison of systemic inflammatory response syndrome with logistic regression models to predict sepsis in neonates.
        Children. 2017; 4https://doi.org/10.3390/children4120111
        • Mikhno A.
        • Ennett C.M.
        Prediction of extubation failure for neonates with respiratory distress syndrome using the MIMIC-II clinical database.
        Conf Proc IEEE Eng Med Biol Soc. 2012; 2012: 5094-5097
        • Shankaran S.
        • Bauer C.R.
        • Bain R.
        • Wright L.L.
        • Prenatal Zachary J.
        Perinatal risk and protective factors for neonatal intracranial hemorrhage.
        Arch Pediatr Adolesc Med. 1996; 150: 491-497
        • Peleg M.
        • Tu S.
        • Bury J.
        • Ciccarese P.
        • Fox J.
        • Greenes R.A.
        • et al.
        Comparing computer-interpretable guideline models: a case-study approach.
        J Am Med Inf Assoc. 2003; 10: 52-68
        • Bodenreider O.
        • Cornet R.
        • Vreeman D.J.
        Recent developments in clinical terminologies - SNOMED CT, LOINC, and RxNorm.
        Yearb Med Inform. 2018; 27: 129-139
        • Kabachinski J.
        What is health level 7?.
        Biomed Instrum Technol. 2006; 40: 375-379
        • Kawamoto K.
        • Del Fiol G.
        • Lobach D.F.
        • Jenders R.A.
        Standards for scalable clinical decision support: need, current and emerging standards, gaps, and proposal for progress.
        Open Med Inf J. 2010; 4: 235-244
        • Vinks A.A.
        • Punt N.C.
        • Menke F.
        • Kirkendall E.
        • Butler D.
        • Duggan T.J.
        • et al.
        Electronic health record-embedded decision support platform for morphine precision dosing in neonates.
        Clin Pharmacol Ther. 2020; 107: 186-194
        • Bertoni C.B.
        • Prusakov P.
        • Merandi J.
        • Bartman T.
        Clinical decision support to improve dosing weight use in infants with neonatal abstinence syndrome.
        Pediatr Qual Saf. 2019; 4
        • Yu C.Z.
        • Myers S.R.
        • Faldasz J.D.
        Simulated comparison of a bayesian clinical decision support system versus standard of care for achieving gentamicin pharmacokinetic targets in neonates.
        Pediatr Infect Dis J. 2020; 39: 313-317
        • Pereboom M.
        • Mulder I.J.
        • Verweij S.L.
        • van der Hoeven R.T.M.
        • Becker M.L.
        A clinical decision support system to improve adequate dosing of gentamicin and vancomycin.
        Int J Med Inform. 2019; 124: 1-5
        • Rittmann B.
        • Stevens M.P.
        Clinical decision support systems and their role in antibiotic stewardship: a systematic review.
        Curr Infect Dis Rep. 2019; 21: 29
        • Hum R.S.
        • Cato K.
        • Sheehan B.
        • Patel S.
        • Duchon J.
        • DeLaMora P.
        • et al.
        Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU.
        Appl Clin Inf. 2014; 5: 368-387
        • Cato K.
        • Sheehan B.
        • Patel S.
        • Duchon J.
        • DeLaMora P.
        • Ferng Y.H.
        • et al.
        Developing clinical decision support within a commercial electronic health record system to improve antimicrobial prescribing in the neonatal ICU.
        Appl Clin Inf. 2014; 5 (0): 368-387https://doi.org/10.4338/aci-2013-09-ra-0069
        • Horn W.
        • Popow C.
        • Miksch S.
        • Kirchner L.
        • Seyfang A.
        Development and evaluation of VIE-PNN, a knowledge-based system for calculating the parenteral nutrition of newborn infants.
        Artif Intell Med. 2002; 24: 217-228
        • Miller R.A.
        • Waitman L.R.
        Trent rosenbloom S. Decision support during inpatient care provider order entry: vanderbilt's WizOrder experience.
        Healthc Inf. 2016; : 275-310https://doi.org/10.1007/978-3-319-31913-1_15
        • Lashinsky J.N.
        • Suhajda J.K.
        • Pleva M.R.
        • Kraft M.D.
        Use of integrated clinical decision support tools to manage parenteral nutrition ordering: experience from an academic medical center.
        Nutr Clin Pract. 2021; 36: 418-426https://doi.org/10.1002/ncp.10469
        • Sensitivity of the Kaiser Permanente early-onset sepsis calculator
        A systematic review and meta-analysis.
        EClinicalMedicine. 2020; 19: 100227
        • Mani S.
        • Ozdas A.
        • Aliferis C.
        • Varol H.A.
        • Chen Q.
        • Carnevale R.
        • et al.
        Medical decision support using machine learning for early detection of late-onset neonatal sepsis.
        J Am Med Inf Assoc. 2014; 21: 326-336
        • Palma J.P.
        • Arain Y.H.
        Development of a web-based decision support tool to operationalize and optimize management of hyperbilirubinemia in preterm infants.
        Clin Perinatol. 2016; 43: 375-383
        • Arain Y.
        • Banda J.M.
        • Faulkenberry J.
        • Bhutani V.K.
        • Palma J.P.
        Clinical decision support tool for phototherapy initiation in preterm infants.
        J Perinatol. 2020; 40: 1518-1523
        • Kawamoto K.
        • Kukhareva P.
        • Shakib J.H.
        • Kramer H.
        • Rodriguez S.
        • Warner P.B.
        • et al.
        Association of an electronic health record add-on app for neonatal bilirubin management with physician efficiency and care quality.
        JAMA Netw Open. 2019; 2 (e1915343)
        • Temko A.
        • Marnane W.
        • Boylan G.
        • Lightbody G.
        Clinical implementation of a neonatal seizure detection algorithm.
        Decis Support Syst. 2015; 70: 86-96https://doi.org/10.1016/j.dss.2014.12.006
        • Gómez-Quintana S.
        • Schwarz C.E.
        • Shelevytsky I.
        • Shelevytska V.
        • Semenova O.
        • Factor A.
        • et al.
        A framework for AI-assisted detection of patent ductus arteriosus from neonatal phonocardiogram.
        Healthcare (Basel). 2021; 9https://doi.org/10.3390/healthcare9020169
      1. Clinical decision support optimizing necrotizing enterocolitis prevention implementation in neonatal intensive care unit (Arizona).
        • Nizami S.
        • Am C.M.
        • Green J.R.
        Integrating physiological data artifacts detection with clinical decision support systems: observational study.
        JMIR Biomed Eng. 2021; 6https://doi.org/10.2196/23495
        • Raurale S.A.
        • Boylan G.B.
        • Mathieson S.
        • Marnane W.P.
        • Lightbody G.
        • O’Toole J.M.
        Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time-frequency distributions.
        J. Neural Eng. 2021; 18: 046007https://doi.org/10.1088/1741-2552/abe8ae
      2. Gilchrist J. Clinical decision support system using real-time data analysis for a neonatal intensive care unit n.d. https://doi.org/10.22215/etd/2012-11330.

      3. Martirosyan H. Integration of neonatal mortality prediction models into a clinical decision support system n.d. https://doi.org/10.22215/etd/2015-10644.

        • Bressan N.
        • James A.
        • McGregor C.
        Trends and opportunities for integrated real time neonatal clinical decision support. Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics.
        • Spitzer A.R.
        • Ellsbury D.
        • Clark R.H.
        The Pediatrix BabySteps® Data Warehouse–a unique national resource for improving outcomes for neonates.
        Indian J Pediatr. 2015; 82: 71-79
        • Meyeroff E.
        • Tremoulet P.
        Etiometry's T3 heuristic evaluation.
        Proc Int Symp Hum Factors Ergon Healthcare. 2021; 10: 37-41
        • Asfari A.
        Artificial intelligence role and clinical decision support system extubation readiness trail and Etiometry scoring system.
        Biomed J Sci Tech Res. 2021; 35: 27291-27293
        • Singh H.
        • Mallaiah R.
        • Yadav G.
        • Verma N.
        • Sawhney A.
        • Brahmachari S.K.
        iCHRCloud: web & mobile based child health imprints for smart healthcare.
        J Med Syst. 2017; 42: 14
        • Singh H.
        • Kaur R.
        • Gangadharan A.
        • Pandey A.K.
        • Manur A.
        • Sun Y.
        • et al.
        Neo-bedside monitoring device for integrated neonatal intensive care unit (iNICU).
        IEEE Access. 2019; 7: 7803-7813https://doi.org/10.1109/access.2018.2886879
        • York J.B.
        • Cardoso M.Z.
        • Azuma D.S.
        • Beam K.S.
        • Binney Jr., G.G.
        • Weingart S.N.
        Computerized physician order entry in the neonatal intensive care unit: a narrative review.
        Appl Clin Inf. 2019; 10: 487-494
        • Bates D.W.
        Effect of computerized physician order entry and a team intervention on prevention of serious medication errors.
        JAMA. 1998; 1311: 280https://doi.org/10.1001/jama.280.15.1311
        • Mekhjian H.S.
        • Kumar R.R.
        • Kuehn L.
        • Bentley T.D.
        • Teater P.
        • Thomas A.
        • et al.
        Immediate benefits realized following implementation of physician order entry at an academic medical center.
        J Am Med Inf Assoc. 2002; 9: 529-539
        • Palma J.P.
        • Arain Y.H.
        A narrative review of electronic clinical decision support tools for hyperbilirubinemia management.
        Pediatric Med. 2021; 4 (0:0–0)
        • Dollberg G.
        • Mimouni M.
        • Dollberg S.
        Computerized decision-making assistance for managing neonatal hyperbilirubinemia.
        Pediatrics. 2006; 117: 262-263
        • Longhurst C.
        • Turner S.
        • Burgos A.E.
        Development of a Web-based decision support tool to increase use of neonatal hyperbilirubinemia guidelines.
        Joint Comm J Qual Patient Saf. 2009; 35: 256-262
        • American Academy of Pediatrics Subcommittee on Hyperbilirubinemia
        Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation.
        Pediatrics. 2004; 114: 297-316
        • Cohen-Wolkowiez M.
        • Moran C.
        • Benjamin D.K.
        • Cotten C.M.
        • Clark R.H.
        • Benjamin Jr., D.K.
        • et al.
        Early and late onset sepsis in late preterm infants.
        Pediatr Infect Dis J. 2009; 28: 1052-1056
        • Hornik C.P.
        • Fort P.
        • Clark R.H.
        • Watt K.
        • Benjamin D.K.
        • Smith P.B.
        • et al.
        Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units.
        Early Hum Dev. 2012; 88: S69-S74
        • Escobar G.J.
        • Puopolo K.M.
        • Wi S.
        • Turk B.J.
        • Kuzniewicz M.W.
        • Walsh E.M.
        • et al.
        Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks' gestation.
        Pediatrics. 2014; 133: 30-36
        • Wang Y.
        • Carrault G.
        • Beuchee A.
        • Senhadji L.
        • Shu H.
        HRV complexity as a diagnostic tool for late onset sepsis in sick premature infants. 2008 8th IEEE International Conference on BioInformatics and BioEngineering.
        • Persad E.
        • Jost K.
        • Honoré A.
        • Forsberg D.
        • Coste K.
        • Olsson H.
        • et al.
        Neonatal sepsis prediction through clinical decision support algorithms: a systematic review.
        Acta Paediatr. 2021; 110: 3201-3226https://doi.org/10.1111/apa.16083
        • Adadi A.
        • Berrada M.
        Peeking inside the black-box: a survey on explainable artificial intelligence (xai).
        IEEE Access. 2018; 6: 52138-52160https://doi.org/10.1109/access.2018.2870052
        • Sirajuddin A.M.
        • Osheroff J.A.
        • Sittig D.F.
        • Chuo J.
        • Velasco F.
        • Collins D.A.
        Implementation pearls from a new guidebook on improving medication use and outcomes with clinical decision support. Effective CDS is essential for addressing healthcare performance improvement imperatives.
        J Healthc Inf Manag. 2009; 23: 38-45
        • Kawamoto K.
        • Houlihan C.A.
        • Balas E.A.
        • Lobach D.F.
        Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success.
        BMJ. 2005; 330: 765
        • Shibl R.
        • Lawley M.
        • Debuse J.
        Factors influencing decision support system acceptance.
        Decis Support Syst. 2013; 54: 953-961https://doi.org/10.1016/j.dss.2012.09.018
        • Shortliffe E.H.
        • Sepúlveda M.J.
        Clinical decision support in the era of artificial intelligence.
        JAMA. 2018; 320: 2199-2200
        • Sittig D.F.
        • Wright A.
        • Middleton B.
        Clinical decision support: a 25 Year retrospective and a 25 Year vision.
        Yearbk. Med. Inform. 2016; 25: S103-S116https://doi.org/10.15265/iys-2016-s034
        • Rosenbloom S.T.
        • Kuhl J.
        Developing pediatric data standards.
        Healthc Inf. 2009; : 415-427https://doi.org/10.1007/978-0-387-76446-7_32
        • Leu M.G.
        • Weinberg S.T.
        • Monsen C.
        • Lehmann C.U.
        • COUNCIL ON CLINICAL INFORMATION TECHNOLOGY
        Web services and cloud computing in pediatric care.
        Pediatrics. 2021; 148https://doi.org/10.1542/peds.2021-052048
        • Lomotan E.A.
        • Meadows G.
        • Michaels M.
        • Michel J.J.
        • Miller K.
        To share is human! Advancing evidence into practice through a national repository of interoperable clinical decision support.
        Appl Clin Inf. 2020; 11: 112-121https://doi.org/10.1055/s-0040-1701253
        • EHR
        Integration and healthcare interoperability with redox.
        https://www.redoxengine.com/
        Date accessed: November 1, 2021
        • Friedman C.P.
        • Wong A.K.
        • Blumenthal D.
        Achieving a nationwide learning health system.
        Sci Transl Med. 2010; 2: 57
        • Lee H.C.
        • Gould J.B.
        • Martin-Anderson S.
        • Dudley R.A.
        Breast-milk feeding of very low birth weight infants as a function of hospital demographics.
        J Perinatol. 2011; 31: S82
        • Patel A.L.
        • Johnson T.J.
        • Meier P.P.
        Racial and socioeconomic disparities in breast milk feedings in US neonatal intensive care units.
        Pediatr Res. 2021; 89: 344-352
        • Sigurdson K.
        • Mitchell B.
        • Liu J.
        • Morton C.
        • Gould J.B.
        • Lee H.C.
        • et al.
        Racial/Ethnic disparities in neonatal intensive care: a systematic review.
        Pediatrics. 2019; 144https://doi.org/10.1542/peds.2018-3114
        • Ravi D.
        • Iacob A.
        • Profit J.
        Unequal care: racial/ethnic disparities in neonatal intensive care delivery.
        Semin Perinatol. 2021; 45: 151411
        • Food US, Administration D
        Others. Clinical decision support software.
        Draft Guid Industry Food Drug Admin Staff. FDA Med Bull. 2019; : 1-27
        • Food, Administration D
        Others. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SaMD).
        2019
        • Goddard K.
        • Roudsari A.
        • Wyatt J.C.
        Automation bias: a systematic review of frequency, effect mediators, and mitigators.
        J Am Med Inf Assoc. 2012; 19: 121-127https://doi.org/10.1136/amiajnl-2011-000089