Advertisement

Pulmonary hypertension and oxidative stress: Where is the link?

Published:April 19, 2022DOI:https://doi.org/10.1016/j.siny.2022.101347

      Abstract

      Oxidative stress can be associated with hyperoxia and hypoxia and is characterized by an increase in reactive oxygen (ROS) and nitrogen (RNS) species generated by an underlying disease process or by supplemental oxygen that exceeds the neutralization capacity of the organ system. ROS and RNS acting as free radicals can inactive several enzymes and vasodilators in the nitric oxide pathway promoting pulmonary vasoconstriction resulting in persistent pulmonary hypertension of the newborn (PPHN). Studies in animal models of PPHN have shown high ROS/RNS that is further increased by hyperoxic ventilation. In addition, antioxidant therapy increased PaO2 in these models, but clinical trials are lacking. We recommend targeting preductal SpO2 between 90 and 97%, PaO2 between 55 and 80 mmHg and avoiding FiO2 > 0.6–0.8 if possible during PPHN management. This review highlights the role of oxidative and nitrosative stress markers on PPHN and potential therapeutic interventions that may alleviate the consequences of increased oxidant stress during ventilation with supplemental oxygen.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mandell E.
        • Kinsella J.P.
        • Abman S.H.
        Persistent pulmonary hypertension of the newborn.
        Pediatr Pulmonol. 2021; 56: 661-669
        • Murphy J.D.
        • Rabinovitch M.
        • Goldstein J.D.
        • Reid L.M.
        The structural basis of persistent pulmonary hypertension of the newborn infant.
        J Pediatr. 1981; 98: 962-967
        • Perez M.
        • Robbins M.E.
        • Revhaug C.
        • Saugstad O.D.
        Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period.
        Free Radic Biol Med. 2019; 142: 61-72
        • Frank L.
        • Groseclose E.E.
        Preparation for birth into an O2-rich environment: the antioxidant enzymes in the developing rabbit lung.
        Pediatr Res. 1984; 18: 240-244
        • Sanchez-Illana A.
        • Pineiro-Ramos J.D.
        • Ramos-Garcia V.
        • Ten-Domenech I.
        • Vento M.
        • Kuligowski J.
        Oxidative stress biomarkers in the preterm infant.
        Adv Clin Chem. 2021; 102: 127-189
        • Rudolph A.M.
        Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy.
        Pediatr Res. 2007; 61: 375-380
        • Mathew B.
        • Lakshminrusimha S.
        Persistent pulmonary hypertension in the newborn.
        Children. 2017; 4
        • Lakshminrusimha S.
        • Steinhorn R.H.
        Pulmonary vascular biology during neonatal transition.
        Clin Perinatol. 1999; 26: 601-619
        • Wedgwood S.
        • Steinhorn R.H.
        • Lakshminrusimha S.
        Optimal oxygenation and role of free radicals in PPHN.
        Free Radic Biol Med. 2019; 142: 97-106
        • Konduri G.G.
        • Theodorou A.A.
        • Mukhopadhyay A.
        • Deshmukh D.R.
        Adenosine triphosphate and adenosine increase the pulmonary blood flow to postnatal levels in fetal lambs.
        Pediatr Res. 1992; 31: 451-457
        • Pierce C.M.
        • Krywawych S.
        • Petros A.J.
        Asymmetric dimethyl arginine and symmetric dimethyl arginine levels in infants with persistent pulmonary hypertension of the newborn.
        Pediatr Crit Care Med : J Soc Critic Care Med World Fed Pediatr Intens Critic Care Soc. 2004; 5: 517-520
        • Steinhorn R.H.
        • Morin 3rd, F.C.
        • Van Wylen D.G.
        • Gugino S.F.
        • Giese E.C.
        • Russell J.A.
        Endothelium-dependent relaxations to adenosine in juvenile rabbit pulmonary arteries and veins.
        Am J Physiol. 1994; 266: H2001-H2006
        • Jones D.P.
        • Sies H.
        The redox code.
        Antioxidants Redox Signal. 2015; 23: 734-746
        • Sies H.
        • Berndt C.
        • Jones D.P.
        Oxidative stress.
        Annu Rev Biochem. 2017; 86: 715-748
        • Sies H.
        • Belousov V.V.
        • Chandel N.S.
        • Davies M.J.
        • Jones D.P.
        • Mann G.E.
        • et al.
        Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology.
        Nat Rev Mol Cell Biol. 2022; (Online ahead of print.)https://doi.org/10.1038/s41580-022-00456-z
        • Di Meo S.
        • Reed T.T.
        • Venditti P.
        • Victor V.M.
        Role of ROS and RNS sources in physiological and pathological conditions.
        Oxid Med Cell Longev. 2016; 2016: 1245049
        • Nordzieke D.E.
        • Medrano-Fernandez I.
        The plasma membrane: a platform for intra- and intercellular redox signaling.
        Antioxidants. 2018; 7
        • Panfoli I.
        • Candiano G.
        • Malova M.
        • De Angelis L.
        • Cardiello V.
        • Buonocore G.
        • et al.
        Oxidative stress as a primary risk factor for brain damage in preterm newborns.
        Front Pediatr. 2018; 6: 369
        • Kukreja R.C.
        • Kontos H.A.
        • Hess M.L.
        • Ellis E.F.
        PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH.
        Circ Res. 1986; 59: 612-619
        • Lyle A.N.
        • Griendling K.K.
        Modulation of vascular smooth muscle signaling by reactive oxygen species.
        Physiology. 2006; 21: 269-280
        • Quinlan C.L.
        • Perevoshchikova I.V.
        • Hey-Mogensen M.
        • Orr A.L.
        • Brand M.D.
        Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.
        Redox Biol. 2013; 1: 304-312
        • Radi R.
        Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine.
        Proc Natl Acad Sci U S A. 2018; 115: 5839-5848
        • Vento M.
        • Sanchez-Illana A.
        Nitric oxide and preterm resuscitation: some words of caution.
        Pediatr Res. 2020; 87: 438-440
        • Stocker S.
        • Van Laer K.
        • Mijuskovic A.
        • Dick T.P.
        The conundrum of hydrogen peroxide signaling and the emerging role of peroxiredoxins as redox relay hubs.
        Antioxidants Redox Signal. 2018; 28: 558-573
        • Malinouski M.
        • Zhou Y.
        • Belousov V.V.
        • Hatfield D.L.
        • Gladyshev V.N.
        Hydrogen peroxide probes directed to different cellular compartments.
        PLoS One. 2011; 6e14564
        • Kuligowski J.
        • Aguar M.
        • Rook D.
        • Lliso I.
        • Torres-Cuevas I.
        • Escobar J.
        • et al.
        Urinary lipid peroxidation byproducts: are they relevant for predicting neonatal morbidity in preterm infants?.
        Antioxidants Redox Signal. 2015; 23: 178-184
        • Milne G.L.
        • Dai Q.
        • Roberts 2nd, L.J.
        The isoprostanes--25 years later.
        Biochim Biophys Acta. 2015; 1851: 433-445
        • Vento M.
        • Moro M.
        • Escrig R.
        • Arruza L.
        • Villar G.
        • Izquierdo I.
        • et al.
        Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease.
        Pediatrics. 2009; 124: e439-e449
        • Kuligowski J.
        • Torres-Cuevas I.
        • Quintas G.
        • Rook D.
        • van Goudoever J.B.
        • Cubells E.
        • et al.
        Assessment of oxidative damage to proteins and DNA in urine of newborn infants by a validated UPLC-MS/MS approach.
        PLoS One. 2014; 9e93703
        • Chafer-Pericas C.
        • Stefanovic V.
        • Sanchez-Illana A.
        • Escobar J.
        • Cernada M.
        • Cubells E.
        • et al.
        Novel biomarkers in amniotic fluid for early assessment of intraamniotic infection.
        Free Radic Biol Med. 2015; 89: 734-740
        • Dalle-Donne I.
        • Giustarini D.
        • Colombo R.
        • Rossi R.
        • Milzani A.
        Protein carbonylation in human diseases.
        Trends Mol Med. 2003; 9: 169-176
        • Perrone S.
        • Laschi E.
        • Buonocore G.
        Biomarkers of oxidative stress in the fetus and in the newborn.
        Free Radic Biol Med. 2019; 142: 23-31
        • Ahmed A.E.
        • Abd-Elmawgood E.A.
        • Hassan M.H.
        Circulating protein carbonyls, antioxidant enzymes and related trace minerals among preterms with respiratory distress syndrome.
        J Clin Diagn Res. 2017; 11: BC17-BC21
        • Cascant-Vilaplana M.M.
        • Albiach-Delgado A.
        • Camprubi-Camprubi M.
        • Perez-Cruz M.
        • Gomez O.
        • Arraez M.
        • et al.
        A UPLC-MS/MS method for the determination of oxidative stress biomarkers in amniotic fluid.
        Free Radic Biol Med. 2022; 179: 164-169
        • Wedgwood S.
        • Lakshminrusimha S.
        • Fukai T.
        • Russell J.A.
        • Schumacker P.T.
        • Steinhorn R.H.
        Hydrogen peroxide regulates extracellular superoxide dismutase activity and expression in neonatal pulmonary hypertension.
        Antioxidants Redox Signal. 2011; 15: 1497-1506
        • Farrow K.N.
        • Wedgwood S.
        • Lee K.J.
        • Czech L.
        • Gugino S.F.
        • Lakshminrusimha S.
        • et al.
        Mitochondrial oxidant stress increases PDE5 activity in persistent pulmonary hypertension of the newborn.
        Respir Physiol Neurobiol. 2010; 174: 272-281
        • Farrow K.N.
        • Lee K.J.
        • Perez M.
        • Schriewer J.M.
        • Wedgwood S.
        • Lakshminrusimha S.
        • et al.
        Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells.
        Antioxidants Redox Signal. 2012; 17: 460-470
        • Wedgwood S.
        • Steinhorn R.H.
        • Bunderson M.
        • Wilham J.
        • Lakshminrusimha S.
        • Brennan L.A.
        • et al.
        Increased hydrogen peroxide downregulates soluble guanylate cyclase in the lungs of lambs with persistent pulmonary hypertension of the newborn.
        Am J Physiol Lung Cell Mol Physiol. 2005; 289: L660-L666
        • Rhoades R.A.
        • Packer C.S.
        • Roepke D.A.
        • Jin N.
        • Meiss R.A.
        Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle.
        Can J Physiol Pharmacol. 1990; 68: 1581-1589
        • Fineman J.R.
        • Soifer S.J.
        • Heymann M.A.
        Regulation of pulmonary vascular tone in the perinatal period.
        Annu Rev Physiol. 1995; 57: 115-134
        • Wiklund N.P.
        • Persson M.G.
        • Gustafsson L.E.
        • Moncada S.
        • Hedqvist P.
        Modulatory role of endogenous nitric oxide in pulmonary circulation in vivo.
        Eur J Pharmacol. 1990; 185: 123-124
        • Palmer R.M.
        • Ashton D.S.
        • Moncada S.
        Vascular endothelial cells synthesize nitric oxide from L-arginine.
        Nature. 1988; 333: 664-666
        • Wedgwood S.
        • Dettman R.W.
        • Black S.M.
        ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species.
        Am J Physiol Lung Cell Mol Physiol. 2001; 281: L1058-L1067
        • Shetty S.S.
        • Okada T.
        • Webb R.L.
        • DelGrande D.
        • Lappe R.W.
        Functionally distinct endothelin B receptors in vascular endothelium and smooth muscle.
        Biochem Biophys Res Commun. 1993; 191: 459-464
        • Kähler J.
        • Ewert A.
        • Weckmüller J.
        • Stobbe S.
        • Mittmann C.
        • Köster R.
        • et al.
        Oxidative stress increases endothelin-1 synthesis in human coronary artery smooth muscle cells.
        J Cardiovasc Pharmacol. 2001; 38: 49-57
        • Black S.M.
        • Johengen M.J.
        • Soifer S.J.
        Coordinated regulation of genes of the nitric oxide and endothelin pathways during the development of pulmonary hypertension in fetal lambs.
        Pediatr Res. 1998; 44: 821-830
        • Lakshminrusimha S.
        • Russell J.A.
        • Steinhorn R.H.
        • Ryan R.M.
        • Gugino S.F.
        • Morin 3rd, F.C.
        • et al.
        Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation.
        Pediatr Res. 2006; 59: 137-141
        • Lakshminrusimha S.
        • Russell J.A.
        • Gugino S.F.
        • Ryan R.M.
        • Mathew B.
        • Nielsen L.C.
        • et al.
        Adjacent bronchus attenuates pulmonary arterial contractility.
        Am J Physiol Lung Cell Mol Physiol. 2006; 291: L473-L478
        • Lakshminrusimha S.
        • Morin 3rd, F.C.
        • Steinhorn R.H.
        • Gugino S.F.
        • Ryan R.M.
        • Kumar V.H.
        • et al.
        Ovine bronchial-derived relaxing factor: changes with development and hyperoxic ventilation.
        J Appl Physiol. 2006; 101: 135-139
        • Lakshminrusimha S.
        • Steinhorn R.H.
        • Wedgwood S.
        • Savorgnan F.
        • Nair J.
        • Mathew B.
        • et al.
        Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen.
        J Appl Physiol. 2011; 111 (1985): 1441-1447
        • Lakshminrusimha S.
        • Swartz D.D.
        • Gugino S.F.
        • Ma C.X.
        • Wynn K.A.
        • Ryan R.M.
        • et al.
        Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension.
        Pediatr Res. 2009; 66: 539-544
        • Chandrasekharan P.
        • Kozielski R.
        • Kumar V.H.
        • Rawat M.
        • Manja V.
        • Ma C.
        • et al.
        Early use of inhaled nitric oxide in preterm infants: is there a rationale for selective approach?.
        Am J Perinatol. 2017; 34: 428-440
        • Konduri G.G.
        • Bakhutashvili I.
        • Eis A.
        • Pritchard Jr., K.
        Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension.
        Am J Physiol Heart Circ Physiol. 2007; 292: H1812-H1820
        • Farrow K.N.
        • Groh B.S.
        • Schumacker P.T.
        • Lakshminrusimha S.
        • Czech L.
        • Gugino S.F.
        • et al.
        Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
        Circ Res. 2008; 102: 226-233
        • Shaul P.W.
        • Yuhanna I.S.
        • German Z.
        • Chen Z.
        • Steinhorn R.H.
        • Morin 3rd, F.C.
        Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension.
        Am J Physiol. 1997; 272: L1005-L1012
        • Steinhorn R.H.
        • Russell J.A.
        • Morin 3rd, F.C.
        Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension.
        Am J Physiol. 1995; 268: H1483-H1489
        • Ivy D.D.
        • Ziegler J.W.
        • Dubus M.F.
        • Fox J.J.
        • Kinsella J.P.
        • Abman S.H.
        Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetal lung.
        Pediatr Res. 1996; 39: 435-442
        • Wedgwood S.
        • Black S.M.
        Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide.
        Am J Physiol Lung Cell Mol Physiol. 2005; 288: L480-L487
        • Zemskov E.A.
        • Lu Q.
        • Ornatowski W.
        • Klinger C.N.
        • Desai A.A.
        • Maltepe E.
        • et al.
        Biomechanical forces and oxidative stress: implications for pulmonary vascular disease.
        Antioxidants Redox Signal. 2019; 31: 819-842
        • Grobe A.C.
        • Wells S.M.
        • Benavidez E.
        • Oishi P.
        • Azakie A.
        • Fineman J.R.
        • et al.
        Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase.
        Am J Physiol Lung Cell Mol Physiol. 2006; 290: L1069-L1077
        • Xu D.
        • Guo H.
        • Xu X.
        • Lu Z.
        • Fassett J.
        • Hu X.
        • et al.
        Exacerbated pulmonary arterial hypertension and right ventricular hypertrophy in animals with loss of function of extracellular superoxide dismutase.
        Hypertension. 2011; 58: 303-309
        • Wang L.
        • Zheng Q.
        • Yuan Y.
        • Li Y.
        • Gong X.
        Effects of 17beta-estradiol and 2-methoxyestradiol on the oxidative stress-hypoxia inducible factor-1 pathway in hypoxic pulmonary hypertensive rats.
        Exp Ther Med. 2017; 13: 2537-2543
        • Bertoli S.R.
        • Marques V.B.
        • Rossi E.M.
        • Krause M.
        • Carneiro M.
        • Simoes M.R.
        • et al.
        Chronic iron overload induces vascular dysfunction in resistance pulmonary arteries associated with right ventricular remodeling in rats.
        Toxicol Lett. 2018; 295: 296-306
        • Wedgwood S.
        • Lakshminrusimha S.
        • Czech L.
        • Schumacker P.T.
        • Steinhorn R.H.
        Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn.
        Antioxidants Redox Signal. 2013; 18: 1765-1776
        • Rao G.N.
        • Berk B.C.
        Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression.
        Circ Res. 1992; 70: 593-599
        • Davis J.M.
        • Auten R.L.
        Maturation of the antioxidant system and the effects on preterm birth.
        Semin Fetal Neonatal Med. 2010; 15: 191-195
        • Berkelhamer S.K.
        • Farrow K.N.
        Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease.
        Antioxidants Redox Signal. 2014; 21: 1837-1848
        • Lavoie J.C.
        • Chessex P.
        Development of glutathione synthesis and gamma-glutamyltranspeptidase activities in tissues from newborn infants.
        Free Radic Biol Med. 1998; 24: 994-1001
        • Wedgwood S.
        • Lakshminrusimha S.
        • Farrow K.N.
        • Czech L.
        • Gugino S.F.
        • Soares F.
        • et al.
        Apocynin improves oxygenation and increases eNOS in persistent pulmonary hypertension of the newborn.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: L616-L626
        • Farrow K.N.
        • Lakshminrusimha S.
        • Reda W.J.
        • Wedgwood S.
        • Czech L.
        • Gugino S.F.
        • et al.
        Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2008; 295: L979-L987
        • Lakshminrusimha S.
        • Russell J.A.
        • Wedgwood S.
        • Gugino S.F.
        • Kazzaz J.A.
        • Davis J.M.
        • et al.
        Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
        Am J Respir Crit Care Med. 2006; 174: 1370-1377
        • Farrow K.N.
        • Lakshminrusimha S.
        • Czech L.
        • Groh B.S.
        • Gugino S.F.
        • Davis J.M.
        • et al.
        SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2010; 299: L109-L116
        • Konduri G.G.
        • Bakhutashvili I.
        • Eis A.
        • Afolayan A.
        Antenatal betamethasone improves postnatal transition in late preterm lambs with persistent pulmonary hypertension of the newborn.
        Pediatr Res. 2013; 73: 621-629
        • Perez M.
        • Wedgwood S.
        • Lakshminrusimha S.
        • Farrow K.N.
        • Steinhorn R.H.
        Hydrocortisone normalizes phosphodiesterase-5 activity in pulmonary artery smooth muscle cells from lambs with persistent pulmonary hypertension of the newborn.
        Pulm Circ. 2014; 4: 71-81
        • Chandrasekharan P.
        • Rawat M.
        • Lakshminrusimha S.
        How do we monitor oxygenation during the management of PPHN? Alveolar, arterial, mixed venous oxygen tension or peripheral saturation?.
        Children. 2020; 7
        • Chandrasekharan P.
        • Lakshminrusimha S.
        Oxygen therapy in preterm infants with pulmonary hypertension.
        Semin Fetal Neonatal Med. 2020; 25: 101070
        • Kapadia V.S.
        • Chalak L.F.
        • DuPont T.L.
        • Rollins N.K.
        • Brion L.P.
        • Wyckoff M.H.
        Perinatal asphyxia with hyperoxemia within the first hour of life is associated with moderate to severe hypoxic-ischemic encephalopathy.
        J Pediatr. 2013; 163: 949-954
        • Vento M.
        • Asensi M.
        • Sastre J.
        • Lloret A.
        • Garcia-Sala F.
        • Vina J.
        Oxidative stress in asphyxiated term infants resuscitated with 100% oxygen.
        J Pediatr. 2003; 142: 240-246
        • Rawat M.
        • Chandrasekharan P.K.
        • Swartz D.D.
        • Mathew B.
        • Nair J.
        • Gugino S.F.
        • et al.
        Neonatal resuscitation adhering to oxygen saturation guidelines in asphyxiated lambs with meconium aspiration.
        Pediatr Res. 2016; 79: 583-588
        • Rawat M.
        • Chandrasekharan P.
        • Gugino S.F.
        • Koenigsknecht C.
        • Nielsen L.
        • Wedgwood S.
        • et al.
        Optimal oxygen targets in term lambs with meconium aspiration syndrome and pulmonary hypertension.
        Am J Respir Cell Mol Biol. 2020; 63: 510-518