Advertisement

Pulmonary vasodilator strategies in neonates with acute hypoxemic respiratory failure and pulmonary hypertension

  • Michael W. Cookson
    Correspondence
    Corresponding author. Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, United States.
    Affiliations
    Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States

    Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
    Search for articles by this author
  • Steven H. Abman
    Affiliations
    Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States

    Section of Pulmonary Medicine, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
    Search for articles by this author
  • John P. Kinsella
    Affiliations
    Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States

    Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
    Search for articles by this author
  • Erica W. Mandell
    Affiliations
    Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States

    Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado Anschutz School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
    Search for articles by this author

      Abstract

      The management of acute hypoxemic respiratory failure (AHRF) in newborns continues to be a clinical challenge with elevated risk for significant morbidities and mortality, especially when accompanied with persistent pulmonary hypertension of the newborn (PPHN). PPHN is a syndrome characterized by marked hypoxemia secondary to extrapulmonary right-to-left shunting across the ductus arteriosus and/or foramen ovale with high pulmonary artery pressure and increased pulmonary vascular resistance (PVR). After optimizing respiratory support, cardiac performance and systemic hemodynamics, targeting persistent elevations in PVR with inhaled nitric oxide (iNO) therapy has improved outcomes of neonates with PPHN physiology. Despite aggressive cardiopulmonary management, a significant proportion of patients have an inadequate response to iNO therapy, prompting consideration for additional pulmonary vasodilator therapy. This article reviews the pathophysiology and management of PPHN in term newborns with AHRF while highlighting both animal and human data to inform a physiologic approach to the use of PH-targeted therapies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dawes G.S.
        • Mott J.C.
        • Widdicombe J.G.
        • Wyatt D.G.
        Changes in the lungs of the new-born lamb.
        J Physiol. 1953; 121: 141-162https://doi.org/10.1113/jphysiol.1953.sp004936
        • Steurer M.A.
        • et al.
        Persistent pulmonary hypertension of the newborn in late preterm and term infants in California.
        Pediatrics. 2017; 139e20161165https://doi.org/10.1542/peds.2016-1165
        • Nakanishi H.
        • Suenaga H.
        • Uchiyama A.
        • Kusuda S.
        • Neonatal Research Network J.
        Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103: F554-F561https://doi.org/10.1136/archdischild-2017-313778
        • Rudolph A.M.
        • Heymann M.A.
        Circulatory changes during growth in the fetal lamb.
        Circ Res. 1970; 26: 289-299https://doi.org/10.1161/01.res.26.3.289
        • Rasanen J.
        • Wood D.C.
        • Weiner S.
        • Ludomirski A.
        • Huhta J.C.
        Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy.
        Circulation. 1996; 94: 1068-1073https://doi.org/10.1161/01.cir.94.5.1068
        • Mielke G.
        • Benda N.
        Cardiac output and central distribution of blood flow in the human fetus.
        Circulation. 2001; 103: 1662-1668https://doi.org/10.1161/01.cir.103.12.1662
        • Sutton M.S.
        • Groves A.
        • Macneill A.
        • Sharland G.
        • Allan L.
        Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study.
        Heart. 1994; 71: 232-237https://doi.org/10.1136/hrt.71.3.232
        • Prsa M.
        • et al.
        Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging.
        Circulation: Cardiovasc Imag. 2014; 7: 663-670https://doi.org/10.1161/circimaging.113.001859
        • Gao Y.
        • Raj J.U.
        Regulation of the pulmonary circulation in the fetus and newborn.
        Physiol Rev. 2010; 90: 1291-1335https://doi.org/10.1152/physrev.00032.2009
        • Lakshminrusimha S.
        • Steinhorn R.H.
        Pulmonary vascular biology during neonatal transition.
        Clin Perinatol. 1999; 26: 601-619
        • Abman S.H.
        • Accurso F.J.
        Acute and chronic fetal pulmonary hypertension alter pulmonary vasoreactivity.
        Chest. 1988; 93: 117S-119Shttps://doi.org/10.1378/chest.93.3_supplement.117s-a
        • Abman S.H.
        • Accurso F.J.
        Acute effects of partial compression of ductus arteriosus on fetal pulmonary circulation.
        Am J Physiol. 1989; 257: H626-H634https://doi.org/10.1152/ajpheart.1989.257.2.H626
        • Accurso F.J.
        • Alpert B.
        • Wilkening R.B.
        • Petersen R.G.
        • Meschia G.
        Time-dependent response of fetal pulmonary blood flow to an increase in fetal oxygen tension.
        Respir Physiol. 1986; 63: 43-52https://doi.org/10.1016/0034-5687(86)90029-0
        • Storme L.
        • Rairigh R.L.
        • Parker T.A.
        • Kinsella J.P.
        • Abman S.H.
        In vivo evidence for a myogenic response in the fetal pulmonary circulation.
        Pediatr Res. 1999; 45: 425-431https://doi.org/10.1203/00006450-199903000-00022
        • Villamor E.
        • et al.
        Chronic intrauterine pulmonary hypertension impairs endothelial nitric oxide synthase in the ovine fetus.
        Am J Physiol. 1997; 272: L1013-L1020https://doi.org/10.1152/ajplung.1997.272.5.L1013
        • Abman S.H.
        • Shanley P.F.
        • Accurso F.J.
        Failure of postnatal adaptation of the pulmonary circulation after chronic intrauterine pulmonary hypertension in fetal lambs.
        J Clin Invest. 1989; 83: 1849-1858https://doi.org/10.1172/jci114091
        • Abman S.H.
        • Chatfield B.A.
        • Hall S.L.
        • McMurtry I.F.
        Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth.
        Am J Physiol. 1990; 259: H1921-H1927https://doi.org/10.1152/ajpheart.1990.259.6.H1921
        • Dunbar Ivy D.
        • Le Cras T.D.
        • Horan M.P.
        • Abman S.H.
        Increased lung preproET-1 and decreased ETB-receptor gene expression in fetal pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 1998; 274: L535-L541https://doi.org/10.1152/ajplung.1998.274.4.l535
        • Mous D.S.
        • Buscop-Van Kempen M.J.
        • Wijnen R.M.H.
        • Tibboel D.
        • Rottier R.J.
        Changes in vasoactive pathways in congenital diaphragmatic hernia associated pulmonary hypertension explain unresponsiveness to pharmacotherapy.
        Respir Res. 2017; 18https://doi.org/10.1186/s12931-017-0670-2
        • Kinsella J.P.
        • et al.
        The left ventricle in congenital diaphragmatic hernia: implications for the management of pulmonary hypertension.
        J Pediatr. 2018; 197: 17-22https://doi.org/10.1016/j.jpeds.2018.02.040
        • Lakshminrusimha S.
        • Konduri G.G.
        • Steinhorn R.H.
        Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates.
        J Perinatol : official journal of the California Perinatal Association. 2016; 36: S12-S19https://doi.org/10.1038/jp.2016.44
        • Kinsella J.P.
        • Abman S.H.
        Clinical approach to inhaled nitric oxide therapy in the newborn with hypoxemia.
        J Pediatr. 2000; 136: 717-726
        • Mourani P.M.
        • Sontag M.K.
        • Younoszai A.
        • Ivy D.D.
        • Abman S.H.
        Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease.
        Pediatrics. 2008; 121: 317-325https://doi.org/10.1542/peds.2007-1583
        • Skinner J.R.
        • et al.
        Right heart pressure determination by Doppler in infants with tricuspid regurgitation.
        Arch Dis Child. 1993; 69: 216-220https://doi.org/10.1136/adc.69.2.216
        • Groh G.K.
        • et al.
        Doppler echocardiography inaccurately estimates right ventricular pressure in children with elevated right heart pressure.
        J Am Soc Echocardiogr. 2014; 27: 163-171https://doi.org/10.1016/j.echo.2013.09.016
        • Kinsella J.P.
        • McCurnin D.C.
        • Clark R.H.
        • Lally K.P.
        • Null Jr., D.M.
        Cardiac performance in ECMO candidates: echocardiographic predictors for ECMO.
        J Pediatr Surg. 1992; 27: 44-47https://doi.org/10.1016/0022-3468(92)90102-d
        • Malowitz J.R.
        • et al.
        Right ventricular echocardiographic indices predict poor outcomes in infants with persistent pulmonary hypertension of the newborn.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 1224-1231https://doi.org/10.1093/ehjci/jev071
        • Breinig S.
        • et al.
        Echocardiographic parameters predictive of poor outcome in persistent pulmonary hypertension of the newborn (PPHN): preliminary results.
        Pediatr Cardiol. 2021; 42: 1848-1853https://doi.org/10.1007/s00246-021-02677-z
        • Clark R.H.
        • Yoder B.A.
        • Sell M.S.
        Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation.
        J Pediatr. 1994; 124: 447-454https://doi.org/10.1016/s0022-3476(94)70374-4
        • Kuluz M.A.
        • et al.
        Preliminary observations of the use of high-frequency jet ventilation as rescue therapy in infants with congenital diaphragmatic hernia.
        J Pediatr Surg. 2010; 45: 698-702https://doi.org/10.1016/j.jpedsurg.2009.07.025
        • Cornfield D.N.
        • Reeve H.L.
        • Tolarova S.
        • Weir E.K.
        • Archer S.
        Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel.
        Proc Natl Acad Sci U S A. 1996; 93: 8089-8094https://doi.org/10.1073/pnas.93.15.8089
        • Cornfield D.N.
        Developmental regulation of oxygen sensing and ion channels in the pulmonary vasculature.
        Adv Exp Med Biol. 2010; 661: 201-220https://doi.org/10.1007/978-1-60761-500-2_13
        • Farrow K.N.
        • et al.
        Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
        Circ Res. 2008; 102: 226-233https://doi.org/10.1161/circresaha.107.161463
        • Frostell C.
        • Fratacci M.D.
        • Wain J.C.
        • Jones R.
        • Zapol W.M.
        Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction.
        Circulation. 1991; 83: 2038-2047https://doi.org/10.1161/01.cir.83.6.2038
        • Kinsella J.P.
        • Parker T.A.
        • Ivy D.D.
        • Abman S.H.
        Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia.
        J Pediatr. 2003; 142: 397-401https://doi.org/10.1067/mpd.2003.140
        • Abman S.H.
        • et al.
        Pediatric pulmonary hypertension: guidelines from the American heart association and American thoracic society.
        Circulation. 2015; 132: 2037-2099https://doi.org/10.1161/CIR.0000000000000329
        • Clark R.H.
        • et al.
        Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group.
        N Engl J Med. 2000; 342: 469-474https://doi.org/10.1056/NEJM200002173420704
      1. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure.
        N Engl J Med. 1997; 336: 597-604https://doi.org/10.1056/nejm199702273360901
        • Konduri G.G.
        • et al.
        A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure.
        Pediatrics. 2004; 113: 559-564https://doi.org/10.1542/peds.113.3.559
        • Tworetzky W.
        • et al.
        Inhaled nitric oxide in neonates with persistent pulmonary hypertension.
        Lancet. 2001; 357: 118-120https://doi.org/10.1016/S0140-6736(00)03548-0
        • Hanson K.A.
        • et al.
        Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity.
        Am J Physiol. 1998; 275: L931-L941
        • Farrow K.N.
        • et al.
        SOD and inhaled nitric oxide normalize phosphodiesterase 5 expression and activity in neonatal lambs with persistent pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2010; 299: L109-L116https://doi.org/10.1152/ajplung.00309.2009
        • Farrow K.N.
        • et al.
        Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells.
        Circ Res. 2008; 102: 226-233https://doi.org/10.1161/CIRCRESAHA.107.161463
        • Farrow K.N.
        • et al.
        Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells.
        Antioxidants Redox Signal. 2012; 17: 460-470https://doi.org/10.1089/ars.2011.4184
        • Baquero H.
        • Soliz A.
        • Neira F.
        • Venegas M.E.
        • Sola A.
        Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study.
        Pediatrics. 2006; 117: 1077-1083https://doi.org/10.1542/peds.2005-0523
        • Steinhorn R.H.
        • et al.
        Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension.
        J Pediatr. 2009; 155 (e841): 841-847https://doi.org/10.1016/j.jpeds.2009.06.012
        • Pierce C.M.
        • et al.
        Efficacy and safety of IV sildenafil in the treatment of newborn infants with, or at risk of, persistent pulmonary hypertension of the newborn (PPHN): a multicenter, randomized, placebo-controlled trial.
        J Pediatr. 2021; 237 (e153): 154-161https://doi.org/10.1016/j.jpeds.2021.05.051
        • Mourani P.M.
        • Sontag M.K.
        • Ivy D.D.
        • Abman S.H.
        Effects of long-term sildenafil treatment for pulmonary hypertension in infants with chronic lung disease.
        J Pediatr. 2009; 154 (e372): 379-384https://doi.org/10.1016/j.jpeds.2008.09.021
        • Keller R.L.
        • et al.
        Abnormal vascular tone in infants and children with lung hypoplasia: findings from cardiac catheterization and the response to chronic therapy.
        Pediatr Crit Care Med. 2006; 7: 589-594https://doi.org/10.1097/01.PCC.0000244401.53189.CB
        • Hyland R.
        • Roe E.G.
        • Jones B.C.
        • Smith D.A.
        Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil.
        Br J Clin Pharmacol. 2001; 51: 239-248https://doi.org/10.1046/j.1365-2125.2001.00318.x
        • Ahsman M.J.
        • et al.
        Sildenafil exposure in neonates with pulmonary hypertension after administration via a nasogastric tube.
        Arch Dis Child Fetal Neonatal Ed. 2010; 95: F109-F114https://doi.org/10.1136/adc.2009.168336
        • Rhee S.-J.
        • et al.
        Population pharmacokinetic analysis of sildenafil in term and preterm infants with pulmonary arterial hypertension.
        Sci Rep. 2022; 12https://doi.org/10.1038/s41598-022-11038-6
        • Cochius-den Otter S.C.M.
        • et al.
        Pharmacokinetic modeling of intravenous sildenafil in newborns with congenital diaphragmatic hernia.
        Eur J Clin Pharmacol. 2020; 76: 219-227https://doi.org/10.1007/s00228-019-02767-1
        • Gonzalez D.
        • et al.
        Population pharmacokinetics of sildenafil in extremely premature infants.
        Br J Clin Pharmacol. 2019; 85: 2824-2837https://doi.org/10.1111/bcp.14111
        • Mukherjee A.
        • Dombi T.
        • Wittke B.
        • Lalonde R.
        Population pharmacokinetics of sildenafil in term neonates: evidence of rapid maturation of metabolic clearance in the early postnatal period.
        Clin Pharmacol Ther. 2009; 85: 56-63https://doi.org/10.1038/clpt.2008.177
        • Chen B.
        • et al.
        Regulation of phosphodiesterase 3 in the pulmonary arteries during the perinatal period in sheep.
        Pediatr Res. 2009; 66: 682-687https://doi.org/10.1203/pdr.0b013e3181bce574
        • Silver P.J.
        • et al.
        Phosphodiesterase isozyme inhibition, activation of the cAMP system, and positive inotropy mediated by milrinone in isolated Guinea pig cardiac muscle.
        J Cardiovasc Pharmacol. 1989; 13: 530-540
        • James A.T.
        • Corcoran J.D.
        • McNamara P.J.
        • Franklin O.
        • El-Khuffash A.F.
        The effect of milrinone on right and left ventricular function when used as a rescue therapy for term infants with pulmonary hypertension.
        Cardiol Young. 2016; 26: 90-99https://doi.org/10.1017/S1047951114002698
        • Chang A.C.
        • Atz A.M.
        • Wernovsky G.
        • Burke R.P.
        • Wessel D.L.
        Milrinone: systemic and pulmonary hemodynamic effects in neonates after cardiac surgery.
        Crit Care Med. 1995; 23: 1907-1914https://doi.org/10.1097/00003246-199511000-00018
        • McNamara P.J.
        • Laique F.
        • Muang-In S.
        • Whyte H.E.
        Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn.
        J Crit Care. 2006; 21: 217-222https://doi.org/10.1016/j.jcrc.2006.01.001
        • McNamara P.J.
        • Shivananda S.P.
        • Sahni M.
        • Freeman D.
        • Taddio A.
        Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide.
        Pediatr Crit Care Med. 2013; 14: 74-84https://doi.org/10.1097/PCC.0b013e31824ea2cd
        • Paradisis M.
        • et al.
        Population pharmacokinetics and dosing regimen design of milrinone in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2007; 92: F204-F209https://doi.org/10.1136/adc.2005.092817
        • Zuppa A.F.
        • et al.
        Population pharmacokinetics of milrinone in neonates with hypoplastic left heart syndrome undergoing stage I reconstruction.
        Anesth Analg. 2006; 102: 1062-1069https://doi.org/10.1213/01.ane.0000198626.67391.34
        • Bailey J.M.
        • et al.
        A population pharmacokinetic analysis of milrinone in pediatric patients after cardiac surgery.
        J Pharmacokinet Pharmacodyn. 2004; 31: 43-59https://doi.org/10.1023/b:jopa.0000029488.45177.48
        • Giaccone A.
        • et al.
        Milrinone pharmacokinetics and pharmacodynamics in neonates with persistent pulmonary hypertension of the newborn.
        Am J Perinatol. 2017; 34: 749-758https://doi.org/10.1055/s-0036-1597996
        • Bischoff A.R.
        • Habib S.
        • Mcnamara P.J.
        • Giesinger R.E.
        Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy.
        J Perinatol. 2021; 41: 2345-2354https://doi.org/10.1038/s41372-021-01049-y
        • Rosenberg A.A.
        • et al.
        Elevated immunoreactive endothelin-1 levels in newborn infants with persistent pulmonary hypertension.
        J Pediatr. 1993; 123: 109-114https://doi.org/10.1016/s0022-3476(05)81552-5
        • Ivy D.D.
        • Le Cras T.D.
        • Horan M.P.
        • Abman S.H.
        Increased lung preproET-1 and decreased ETB-receptor gene expression in fetal pulmonary hypertension.
        Am J Physiol. 1998; 274: L535-L541
        • Ivy D.D.
        • et al.
        Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus.
        J Clin Invest. 1997; 99: 1179-1186https://doi.org/10.1172/JCI119274
        • Ivy D.D.
        • et al.
        Chronic intrauterine pulmonary hypertension alters endothelin receptor activity in the ovine fetal lung.
        Pediatr Res. 1996; 39: 435-442https://doi.org/10.1203/00006450-199603000-00010
        • Abman S.H.
        • et al.
        Pediatric pulmonary hypertension: guidelines from the American heart association and American thoracic society.
        Circulation. 2015; 132: 2037-2099https://doi.org/10.1161/CIR.0000000000000329
        • Mohamed W.A.
        • Ismail M.
        A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn.
        J Perinatol. 2012; 32: 608-613https://doi.org/10.1038/jp.2011.157
        • Steinhorn R.H.
        • et al.
        Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial.
        J Pediatr. 2016; 177 (e93): 90-96https://doi.org/10.1016/j.jpeds.2016.06.078
        • Barst R.J.
        • et al.
        Pharmacokinetics, safety, and efficacy of bosentan in pediatric patients with pulmonary arterial hypertension.
        Clin Pharmacol Ther. 2003; 73: 372-382https://doi.org/10.1016/s0009-9236(03)00005-5
        • Beghetti M.
        • et al.
        Pharmacokinetic and clinical profile of a novel formulation of bosentan in children with pulmonary arterial hypertension: the FUTURE-1 study.
        Br J Clin Pharmacol. 2009; 68: 948-955https://doi.org/10.1111/j.1365-2125.2009.03532.x
        • Burgess G.
        • Hoogkamer H.
        • Collings L.
        • Dingemanse J.
        Mutual pharmacokinetic interactions between steady-state bosentan and sildenafil.
        Eur J Clin Pharmacol. 2008; 64: 43-50https://doi.org/10.1007/s00228-007-0408-z
        • Ahmad K.A.
        • et al.
        Intravenous epoprostenol improves oxygenation index in patients with persistent pulmonary hypertension of the newborn refractory to nitric oxide.
        J Perinatol. 2018; 38: 1212-1219https://doi.org/10.1038/s41372-018-0179-7
        • Bindl L.
        • Fahnenstich H.
        • Peukert U.
        Aerosolised prostacyclin for pulmonary hypertension in neonates.
        Arch Dis Child Fetal Neonatal Ed. 1994; 71: F214-F216https://doi.org/10.1136/fn.71.3.f214
        • Soditt V.
        • Aring C.
        • Groneck P.
        Improvement of oxygenation induced by aerosolized prostacyclin in a preterm infant with persistent pulmonary hypertension of the newborn.
        Intensive Care Med. 1997; 23: 1275-1278https://doi.org/10.1007/s001340050498
        • Kelly L.K.
        • Porta N.F.M.
        • Goodman D.M.
        • Carroll C.L.
        • Steinhorn R.H.
        Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide.
        J Pediatr. 2002; 141: 830-832https://doi.org/10.1067/mpd.2002.129849
        • Steinhorn R.H.
        • Russell J.A.
        • Morin 3rd, F.C.
        Disruption of cGMP production in pulmonary arteries isolated from fetal lambs with pulmonary hypertension.
        Am J Physiol. 1995; 268: H1483-H1489https://doi.org/10.1152/ajpheart.1995.268.4.H1483
        • Chester M.
        • et al.
        Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension.
        Am J Physiol Lung Cell Mol Physiol. 2011; 301: L755-L764https://doi.org/10.1152/ajplung.00138.2010
        • Chester M.
        • et al.
        Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus.
        Am J Physiol Lung Cell Mol Physiol. 2009; 297: L318-L325https://doi.org/10.1152/ajplung.00062.2009
        • Spreemann T.
        • Bertram H.
        • Happel C.M.
        • Kozlik‐Feldmann R.
        • Hansmann G.
        First‐in‐child use of the oral soluble guanylate cyclase stimulator riociguat in pulmonary arterial hypertension.
        Pulm Circ. 2018; 8: 1-6https://doi.org/10.1177/2045893217743123
        • Handley S.C.
        • et al.
        Inhaled nitric oxide use in preterm infants in California neonatal intensive care units.
        J Perinatol. 2016; 36: 635-639https://doi.org/10.1038/jp.2016.49
        • Nelin L.
        • et al.
        Use of inhaled nitric oxide in preterm vs term/near-term neonates with pulmonary hypertension: results of the PaTTerN registry study.
        J Perinatol. 2022; 42: 14-18https://doi.org/10.1038/s41372-021-01252-x
        • Askie L.M.
        • et al.
        Inhaled nitric oxide in preterm infants: an individual-patient data meta-analysis of randomized trials.
        Pediatrics. 2011; 128: 729-739https://doi.org/10.1542/peds.2010-2725
        • Abman S.H.
        • et al.
        Pediatric pulmonary hypertension.
        Circulation. 2015; 132: 2037-2099https://doi.org/10.1161/cir.0000000000000329
        • Kinsella J.P.
        • et al.
        Recommendations for the use of inhaled nitric oxide therapy in premature newborns with severe pulmonary hypertension.
        J Pediatr. 2016; 170: 312-314https://doi.org/10.1016/j.jpeds.2015.11.050
        • Kinsella J.P.
        • et al.
        Inhaled nitric oxide in premature neonates with severe hypoxaemic respiratory failure: a randomised controlled trial.
        Lancet. 1999; 354: 1061-1065https://doi.org/10.1016/s0140-6736(99)03558-8
        • Kinsella J.P.
        • et al.
        Early inhaled nitric oxide therapy in premature newborns with respiratory failure.
        N Engl J Med. 2006; 355: 354-364https://doi.org/10.1056/nejmoa060442