Advertisement

Management of cardiac dysfunction in neonates with pulmonary hypertension and the role of the ductus arteriosus

      Abstract

      Pulmonary hypertension in the neonate is associated with cardiopulmonary disturbances and neurodevelopment morbidity. The patent ductus arteriosus is a persistent fetal shunt that can be pathologic vs supportive in the setting of neonatal pulmonary hypertension. Understanding the underlying pathophysiology of pulmonary hypertension and the cardiopulmonary effects of various phenotypes can guide management in this vulnerable population. In this narrative, we will summarize the physiologic principles of pulmonary hypertension, the impact of the patent ductus arteriosus on various phenotypes, and the utility of serial targeted neonatal echocardiography to individualize clinical assessment and management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Walsh-Sukys M.C.
        • Tyson J.E.
        • Wright L.L.
        • et al.
        Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes.
        Pediatrics. Jan 2000; 105: 14-20https://doi.org/10.1542/peds.105.1.14
        • Steurer M.A.
        • Jelliffe-Pawlowski L.L.
        • Baer R.J.
        • Partridge J.C.
        • Rogers E.E.
        • Keller R.L.
        Persistent pulmonary hypertension of the newborn in late preterm and term infants in California.
        Pediatrics. Jan 2017; 139https://doi.org/10.1542/peds.2016-1165
        • Rosenzweig E.B.
        • Bates A.
        • Mullen M.P.
        • et al.
        Cardiac catheterization and hemodynamics in a multicenter cohort of children with pulmonary hypertension.
        Ann Am Thorac Soc. Jan 20 2022; https://doi.org/10.1513/AnnalsATS.202108-998OC
        • Hamrick S.E.
        • Hansmann G.
        Patent ductus arteriosus of the preterm infant.
        Pediatrics. May 2010; 125: 1020-1030https://doi.org/10.1542/peds.2009-3506
        • Kajino H.
        • Goldbarg S.
        • Roman C.
        • et al.
        Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus.
        Pediatr Res. Feb 2002; 51: 228-235https://doi.org/10.1203/00006450-200202000-00017
        • Philip R.
        • Waller 3rd, B.R.
        • Agrawal V.
        • et al.
        Morphologic characterization of the patent ductus arteriosus in the premature infant and the choice of transcatheter occlusion device.
        Cathet Cardiovasc Interv. Feb 1 2016; 87: 310-317https://doi.org/10.1002/ccd.26287
        • Deshpande P.
        • Baczynski M.
        • McNamara P.J.
        • Jain A.
        Patent ductus arteriosus: the physiology of transition.
        Semin Fetal Neonatal Med. Aug 2018; 23: 225-231https://doi.org/10.1016/j.siny.2018.05.001
        • Romero T.
        • Covell J.
        • Friedman W.F.
        A comparison of pressure-volume relations of the fetal, newborn, and adult heart.
        Am J Physiol. May 1972; 222: 1285-1290https://doi.org/10.1152/ajplegacy.1972.222.5.1285
        • Sarnari R.
        • Kamal R.Y.
        • Friedberg M.K.
        • Silverman N.H.
        Doppler assessment of the ratio of the systolic to diastolic duration in normal children: relation to heart rate, age and body surface area.
        J Am Soc Echocardiogr. Aug 2009; 22: 928-932https://doi.org/10.1016/j.echo.2009.05.004
        • Bensley J.G.
        • Moore L.
        • De Matteo R.
        • Harding R.
        • Black M.J.
        Impact of preterm birth on the developing myocardium of the neonate.
        Pediatr Res. Apr 2018; 83: 880-888https://doi.org/10.1038/pr.2017.324
        • Aye C.Y.L.
        • Lewandowski A.J.
        • Lamata P.
        • et al.
        Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm.
        Pediatr Res. Jul 2017; 82: 36-46https://doi.org/10.1038/pr.2017.96
        • Choudhry S.
        • Salter A.
        • Cunningham T.W.
        • et al.
        Risk factors and prognostic significance of altered left ventricular geometry in preterm infants.
        J Perinatol. May 2018; 38: 543-549https://doi.org/10.1038/s41372-018-0047-5
        • Cox D.J.
        • Bai W.
        • Price A.N.
        • Edwards A.D.
        • Rueckert D.
        • Groves A.M.
        Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle.
        Pediatr Res. May 2019; 85: 807-815https://doi.org/10.1038/s41390-018-0171-0
        • Pinsky M.R.
        The right ventricle: interaction with the pulmonary circulation.
        Crit Care. Sep 10 2016; 20: 266https://doi.org/10.1186/s13054-016-1440-0
        • Bhattacharya S.
        • Sen S.
        • Levy P.T.
        • Rios D.R.
        Comprehensive evaluation of right heart performance and pulmonary hemodynamics in neonatal pulmonary hypertension : evaluation of cardiopulmonary performance in neonatal pulmonary hypertension.
        Curr Treat Options Cardiovasc Med. Feb 15 2019; 21: 10https://doi.org/10.1007/s11936-019-0713-8
        • Lakshminrusimha S.
        Neonatal and postneonatal pulmonary hypertension.
        Children. Feb 11 2021; : 8https://doi.org/10.3390/children8020131
        • Friedberg M.K.
        • Redington A.N.
        Right versus left ventricular failure: differences, similarities, and interactions.
        Circulation. Mar 4 2014; 129: 1033-1044https://doi.org/10.1161/CIRCULATIONAHA.113.001375
        • Haddad F.
        • Hunt S.A.
        • Rosenthal D.N.
        • Murphy D.J.
        Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle.
        Circulation. Mar 18 2008; 117: 1436-1448https://doi.org/10.1161/CIRCULATIONAHA.107.653576
        • Naeije R.
        • Badagliacca R.
        The overloaded right heart and ventricular interdependence.
        Cardiovasc Res. Oct 1 2017; 113: 1474-1485https://doi.org/10.1093/cvr/cvx160
        • Jain A.
        • Giesinger R.E.
        • Dakshinamurti S.
        • et al.
        Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group.
        J Perinatol. Jan 2022; 42: 3-13https://doi.org/10.1038/s41372-021-01296-z
        • Siefkes H.M.
        • Lakshminrusimha S.
        Management of systemic hypotension in term infants with persistent pulmonary hypertension of the newborn: an illustrated review.
        Arch Dis Child Fetal Neonatal Ed. Jul 2021; 106: 446-455https://doi.org/10.1136/archdischild-2020-319705
        • Kulik T.J.
        Pulmonary hypertension caused by pulmonary venous hypertension.
        Pulm Circ. Dec 2014; 4: 581-595https://doi.org/10.1086/678471
        • Bussmann N.
        • Smith A.
        • Cappelleri A.
        • et al.
        Circumferential and radial deformation assessment in premature infants: ready for primetime?.
        Echocardiography. Aug 2019; 36: 1532-1539https://doi.org/10.1111/echo.14442
        • Hansmann G.
        • Koestenberger M.
        • Alastalo T.P.
        • et al.
        2019 Updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: the European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.
        J Heart Lung Transplant. Sep 2019; 38: 879-901https://doi.org/10.1016/j.healun.2019.06.022
        • Fuloria M.
        • Aschner J.L.
        Persistent pulmonary hypertension of the newborn.
        Semin Fetal Neonatal Med. Aug 2017; 22: 220-226https://doi.org/10.1016/j.siny.2017.03.004
        • Hsiao S.H.
        • Wang W.C.
        • Yang S.H.
        • et al.
        Myocardial tissue Doppler-based indexes to distinguish right ventricular volume overload from right ventricular pressure overload.
        Am J Cardiol. Feb 15 2008; 101: 536-541https://doi.org/10.1016/j.amjcard.2007.08.058
        • Critser P.J.
        • Levy P.T.
        Risk assessment and monitoring of right ventricular function in congenital diaphragmatic hernia.
        Ann Am Thorac Soc. Nov 2020; 17: 1380-1381https://doi.org/10.1513/AnnalsATS.202008-1029ED
        • Rios D.R.
        • Lapointe A.
        • Schmolzer G.M.
        • et al.
        Hemodynamic optimization for neonates with neonatal encephalopathy caused by a hypoxic ischemic event: physiological and therapeutic considerations.
        Semin Fetal Neonatal Med. Aug 2021; 26101277https://doi.org/10.1016/j.siny.2021.101277
        • Hsu S.
        • Houston B.A.
        • Tampakakis E.
        • et al.
        Right ventricular functional reserve in pulmonary arterial hypertension.
        Circulation. Jun 14 2016; 133: 2413-2422https://doi.org/10.1161/CIRCULATIONAHA.116.022082
        • Naeije R.
        • Manes A.
        The right ventricle in pulmonary arterial hypertension.
        Eur Respir Rev. Dec 2014; 23: 476-487https://doi.org/10.1183/09059180.00007414
        • Vonk Noordegraaf A.
        • Westerhof B.E.
        • Westerhof N.
        The relationship between the right ventricle and its load in pulmonary hypertension.
        J Am Coll Cardiol. Jan 17 2017; 69: 236-243https://doi.org/10.1016/j.jacc.2016.10.047
        • Jain A.
        • El-Khuffash A.F.
        • van Herpen C.H.
        • et al.
        Cardiac function and ventricular interactions in persistent pulmonary hypertension of the newborn.
        Pediatr Crit Care Med. Feb 1 2021; 22: e145-e157https://doi.org/10.1097/PCC.0000000000002579
        • Brimioulle S.
        • Wauthy P.
        • Ewalenko P.
        • et al.
        Single-beat estimation of right ventricular end-systolic pressure-volume relationship.
        Am J Physiol Heart Circ Physiol. May 2003; 284: H1625-H1630https://doi.org/10.1152/ajpheart.01023.2002
        • Brewis M.J.
        • Bellofiore A.
        • Vanderpool R.R.
        • et al.
        Imaging right ventricular function to predict outcome in pulmonary arterial hypertension.
        Int J Cardiol. Sep 1 2016; 218: 206-211https://doi.org/10.1016/j.ijcard.2016.05.015
        • Delicce A.V.
        • Makaryus A.N.
        Physiology, Frank starling law.
        StatPearls, 2022
        • Naeije R.
        • Brimioulle S.
        • Dewachter L.
        Biomechanics of the right ventricle in health and disease (2013 Grover Conference series).
        Pulm Circ. Sep 2014; 4: 395-406https://doi.org/10.1086/677354
        • AbdelMassih A.F.
        • Al Zahraa Hassan F.
        • El-Gammal A.
        • Tawfik M.
        • Nabil D.
        The overlooked left ventricle in persistent pulmonary hypertension of the newborn.
        J Matern Fetal Neonatal Med. Jan 2021; 34: 72-76https://doi.org/10.1080/14767058.2019.1598363
        • Vlahakes G.J.
        • Turley K.
        • Hoffman J.I.
        The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations.
        Circulation. Jan 1981; 63: 87-95https://doi.org/10.1161/01.cir.63.1.87
        • Puwanant S.
        • Park M.
        • Popovic Z.B.
        • et al.
        Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension.
        Circulation. Jan 19 2010; 121: 259-266https://doi.org/10.1161/CIRCULATIONAHA.108.844340
        • Rong X.
        • Ye Q.
        • Wang Q.
        • et al.
        Post-interventional evaluation and follow-up in children with patent ductus arteriosus complicated with moderate to severe pulmonary arterial hypertension: a retrospective study.
        Front Cardiovasc Med. 2021; 8693414https://doi.org/10.3389/fcvm.2021.693414
        • Vettukattil J.J.
        Pathophysiology of patent ductus arteriosus in the preterm infant.
        Curr Pediatr Rev. 2016; 12: 120-122https://doi.org/10.2174/157339631202160506002215
        • Giesinger R.E.
        • Elsayed Y.N.
        • Castaldo M.P.
        • McNamara P.J.
        Targeted neonatal echocardiography-guided therapy in vein of galen aneurysmal malformation: a report of two cases with a review of physiology and approach to management.
        AJP Rep. Apr 2019; 9: e172-e176https://doi.org/10.1055/s-0039-1688765
        • de Boode W.P.
        • Singh Y.
        • Molnar Z.
        • et al.
        Application of Neonatologist Performed Echocardiography in the assessment and management of persistent pulmonary hypertension of the newborn.
        Pediatr Res. Jul 2018; 84: 68-77https://doi.org/10.1038/s41390-018-0082-0
        • Lesneski A.
        • Hardie M.
        • Ferrier W.
        • Lakshminrusimha S.
        • Vali P.
        Bidirectional ductal shunting and preductal to postductal oxygenation gradient in persistent pulmonary hypertension of the newborn.
        Children. Sep 15 2020; : 7https://doi.org/10.3390/children7090137
        • Bischoff A.R.
        • Giesinger R.E.
        • Neary E.
        • Weisz D.E.
        • Belik J.
        • McNamara P.J.
        Clinical and echocardiography predictors of response to inhaled nitric oxide in hypoxemic term and near-term neonates.
        Pediatr Pulmonol. May 2021; 56: 982-991https://doi.org/10.1002/ppul.25252
        • Jain A.
        • Sahni M.
        • El-Khuffash A.
        • Khadawardi E.
        • Sehgal A.
        • McNamara P.J.
        Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation.
        J Pediatr. Apr 2012; 160: 584-589 e1https://doi.org/10.1016/j.jpeds.2011.09.027
        • Abdelazziz M.M.
        • Abdelhamid H.M.
        Terlipressin versus norepinephrine to prevent milrinone-induced systemic vascular hypotension in cardiac surgery patient with pulmonary hypertension.
        Ann Card Anaesth. Apr-Jun 2019; 22: 136-142https://doi.org/10.4103/aca.ACA_83_18
        • Bischoff A.R.
        • Habib S.
        • McNamara P.J.
        • Giesinger R.E.
        Hemodynamic response to milrinone for refractory hypoxemia during therapeutic hypothermia for neonatal hypoxic ischemic encephalopathy.
        J Perinatol. Sep 2021; 41: 2345-2354https://doi.org/10.1038/s41372-021-01049-y
        • Joynt C.
        • Bigam D.L.
        • Charrois G.
        • Jewell L.D.
        • Korbutt G.
        • Cheung P.Y.
        Milrinone, dobutamine or epinephrine use in asphyxiated newborn pigs resuscitated with 100% oxygen.
        Intensive Care Med. Jun 2010; 36: 1058-1066https://doi.org/10.1007/s00134-010-1820-x
        • Cheung P.Y.
        • Barrington K.J.
        The effects of dopamine and epinephrine on hemodynamics and oxygen metabolism in hypoxic anesthetized piglets.
        Crit Care. 2001; 5: 158-166https://doi.org/10.1186/cc1016
        • Mohamed A.A.
        • Louis D.
        • Surak A.
        • Weisz D.E.
        • McNamara P.J.
        • Jain A.
        Vasopressin for refractory persistent pulmonary hypertension of the newborn in preterm neonates - a case series.
        J Matern Fetal Neonatal Med. Apr 29 2020; : 1-9https://doi.org/10.1080/14767058.2020.1757642
        • Lakshminrusimha S.
        • Russell J.A.
        • Wedgwood S.
        • et al.
        Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension.
        Am J Respir Crit Care Med. Dec 15 2006; 174: 1370-1377https://doi.org/10.1164/rccm.200605-676OC
        • Manouchehri N.
        • Bigam D.L.
        • Churchill T.
        • Rayner D.
        • Joynt C.
        • Cheung P.Y.
        A comparison of combination dopamine and epinephrine treatment with high-dose dopamine alone in asphyxiated newborn piglets after resuscitation.
        Pediatr Res. Apr 2013; 73: 435-442https://doi.org/10.1038/pr.2013.17
        • McNamara P.J.
        • Giesinger R.E.
        • Lakshminrusimha S.
        Dopamine and neonatal pulmonary hypertension - pressing need for a better pressor?.
        J Pediatr. Mar 18 2022; https://doi.org/10.1016/j.jpeds.2022.03.022
        • Giesinger R.E.
        • More K.
        • Odame J.
        • Jain A.
        • Jankov R.P.
        • McNamara P.J.
        Controversies in the identification and management of acute pulmonary hypertension in preterm neonates.
        Pediatr Res. Dec 2017; 82: 901-914https://doi.org/10.1038/pr.2017.200
        • Chandrasekharan P.
        • Lakshminrusimha S.
        Oxygen therapy in preterm infants with pulmonary hypertension.
        Semin Fetal Neonatal Med. Apr 2020; 25101070https://doi.org/10.1016/j.siny.2019.101070
        • Zielinsky P.
        • Piccoli Jr., A.L.
        Myocardial hypertrophy and dysfunction in maternal diabetes.
        Early Hum Dev. May 2012; 88: 273-278https://doi.org/10.1016/j.earlhumdev.2012.02.006