Advertisement

Protecting the brain of the micropreemie

  • S.M. Boyd
    Affiliations
    Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia

    Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
    Search for articles by this author
  • S.J. Tapawan
    Affiliations
    Newborn Care Centre, The Royal Hospital for Women, Sydney, Australia

    School of Women's and Children's Health, University of New South Wales, NSW, Australia
    Search for articles by this author
  • N. Badawi
    Affiliations
    Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia

    Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
    Search for articles by this author
  • H. Popat
    Correspondence
    Corresponding author. Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia.
    Affiliations
    Grace Centre for Newborn Intensive Care, The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia

    Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia

    NHMRC Clinical Trial Centre, Medical Foundation Building, Camperdown, NSW, Australia
    Search for articles by this author

      Abstract

      Advances in perinatal care have seen substantial improvements in survival without disability for extremely preterm infants. Protecting the developing brain and reducing neurodevelopmental sequelae of extremely preterm birth are strategic priorities for both research and clinical care. A number of evidence-based interventions exist for neuroprotection in micropreemies, inclusive of prevention of preterm birth and multiple births with implantation of only one embryo during in vitro fertilisation, as well as antenatal care to optimize fetal wellbeing, strategies for supporting neonatal transition, and neuroprotective developmental care. Avoidance of complications that trigger ischemia and inflammation is vital for minimizing brain dysmaturation and injury, particularly of the white matter. Neurodevelopmental surveillance, early diagnosis of cerebral palsy and early intervention are essential for optimizing long-term outcomes and quality of life. Research priorities include further evaluation of putative neuroprotective agents, and investigation of common neonatal interventions in trials adequately powered to assess neurodevelopmental outcome.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Stoll B.
        • Hansen N.I.
        • Bell E.F.
        • Walsh M.C.
        • Carlo W.A.
        • Shankaran S.
        • et al.
        Trends in care practices, morbidity, and mortality of extremely preterm neonates.
        JAMA. 2015; 314 (1993–2012): 1039-1051
        • Galea C.M.S.
        • Smithers-Sheedy H.
        • Reid S.M.
        • Gibson C.
        • Delacy M.
        • et al.
        Cerebral palsy trends in Australia (1995–2009): a population-based observational study.
        Dev Med Child Neurol. 2019; 61: 186-193
        • Saigal S.
        • Doyle L.W.
        An overview of mortality and sequelae of preterm birth from infancy to adulthood.
        Lancet. 2008; 371: 261-269
        • Woodward L.
        • Clark C.A.C.
        • Bora S.
        • Inder T.E.
        Neonatal white matter abnormalities an important predictor of neurocognitive outcome for very preterm children.
        PLoS One. 2012; 7
        • Liggins G.C.
        • Howie R.N.
        A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants.
        Pediatrics. 1972; 50: 515-525
        • Doyle L.W.
        • Crowther C.A.
        • Middleton P.
        • Marret S.
        Antenatal magnesium sulfate and neurologic outcome in preterm infants: a systematic review.
        Obstet Gynecol. 2009; 113 ([published Online First: Epub Date]|): 1327-1333https://doi.org/10.1097/AOG.0b013e3181a60495
        • Boland R.A.
        • Dawson J.A.
        • Davis P.G.
        • Doyle L.W.
        Why birthplace still matters for infants born before 32 weeks: infant mortality associated with birth at 22–31 weeks' gestation in non‐tertiary hospitals in Victoria over two decades.
        Austr N Z Obstet Gynaecol. 2015; 55: 163-169
        • Newnham J.P.
        • White S.W.
        • Meharry S.
        • Lee H.-S.
        • Pedretti M.K.
        • al e
        Reducing preterm birth by a statewide multifaceted program: an implementation study.
        ACOG. 2017; 216: 434-442
        • Chang H.H.
        • Larson J.
        • Blencowe H.
        • et al.
        Preventing preterm births: analysis of trends and potential reductions with interventions in 39 countries with very high human development index.
        Lancet. 2013; 381: 223-234
        • Morris J.
        • Brown K.
        • Newnham J.
        The Australian preterm birth prevention alliance.
        Wiley Online Library, 2020: 321-323
        • Macaldowie A.
        • Wang Y.
        • Chughtai A.
        • Chambers G.
        Assisted reproductive technology in Australia and New Zealand 2012.
        The University of New South Wales, Sydney2014
        • Schmölzer G.M.K.M.
        • Pichler G.
        • Aziz K.
        • O'Reilly M.
        • Cheung P.-Y.
        Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis.
        BMJ. 2013; 17
        • Roberts C.
        • Badgery-Parker T.
        • Algert C.S.
        • Bowen J.R.
        • Nassar N.
        Trends in use of neonatal CPAP: a population-based study.
        BMC Pediatr. 2011; 11
        • Oei J.
        • Finer N.N.
        • Saugstad O.D.
        • Wright I.M.
        • Rabi Y.
        • Tarnow-Mordi W.
        • et al.
        Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2018; 103: F446-F454
        • Askie L.
        • Darlow B.A.
        • Finer N.
        • Schmidt B.
        • Stenson B.
        • Tarnow-Mordi W.
        • et al.
        Association between oxygen saturation targeting and death or disability in extremlely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration.
        JAMA. 2018; 319: 2190-2201
        • Guillot M.
        • Miller S.P.
        The dimensions of white matter injury in preterm neonates.
        Semin Perinatol. 2021; : 45
        • Boscarino G.
        • Di Chiara M.
        • Cellitti R.
        • De Nardo M.C.
        • Conti M.G.
        • Parisi P.
        • et al.
        Effects of early energy intake on neonatal cerebral growth of preterm newborn: an observational study.
        Sci Rep. 2021; 11
        • Schmidt B.
        • Roberts R.S.
        • Davis P.
        • Doyle L.W.
        • Barrington K.J.
        • Ohlsson A.
        • et al.
        Long-term effects of caffeine therapy for apnea of prematurity.
        N Engl J Med. 2007; 357: 1893-1902
        • Kluckow M.
        • Jeffrey M.
        • Gill A.
        • Evans N.
        A randomised placebo-controlled trial of early treatment of the patent ductus arteriosus.
        Arch Dis Child Fetal Neonatal Ed. 2014; 99: F99-F104
        • Griffiths N.
        • Spence K.
        • Loughran-Fowlds A.
        • Westrup B.
        Individualised developmental care for babies and parents in the NICU: evidence-based best practice guideline recommendations.
        Early Hum Dev. 2019; 139
        • Novak I.
        • Morgan C.
        • Adde L.
        • Blackman J.
        • Boyd R.N.
        • Brunstrom-Hernandez J.
        • et al.
        Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment.
        JAMA Pediatr. 2017; 171: 897-907
        • Spittle A.
        • Orton J.
        • Anderson P.J.
        • Boyd R.
        • Doyle L.W.
        Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants.
        Cochrane Database Syst Rev. 2015; 11
        • Crump C.
        An overview of adult health outcomes after preterm birth.
        Early Hum Dev. 2020; : 150
        • Volpe J.
        Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions.
        Pediatr Neurol. 2019; 95: 42-66
        • Van Haastert I.
        • Groenendaal F.
        • Uiterwaal C.S.P.M.
        • Termote J.U.M.
        • Van Der Heide-Jalving M.
        • Eijsermans M.J.C.
        • et al.
        Decreasing incidence and severity of cerebral palsy in prematurely born children.
        J Pediatr. 2011; 159 (e1): 86-91
      1. Wagenaar N, Chau V, Groenendaal F, Kersbergen KH, Poskitt KJ, Grunau RE, et al. Clinical risk factors for punctate white matter lesions on early magnetic resonance imaging in preterm newborns. J Pediatr;182:34-40.e1.

        • Niwa T.
        • DeVries L.S.
        • Benders M.J.N.L.
        • Takahara T.
        • Nikkels P.G.J.
        • Groenendaal F.
        Punctate white matter lesions in infants: new insights using susceptibility weighted imaging.
        Neuroradiology. 2011; 53: 669-679
        • Van Haastert I.
        • De Vries L.S.
        • Eijsermans M.J.C.
        • Jongmans M.J.
        • Helders P.J.M.
        • Gorter J.W.
        Gross motor functional abilities in preterm-born children with cerebral palsy due to periventricular leukomalacia.
        Dev Med Child Neurol. 2008; 50: 684-689
        • Adams-Chapman I.
        • Hansen N.I.
        • Stoll B.J.
        • Higgins R for the NICHD Research Network
        Neurodevelopmental outcome of extremely low birthweight infants with posthemorrhagic hydrocephalus requiring shunt Insertion.
        Pediatrics. 2008; 121: e1167-e1177
        • Yeo K.T.T.R.
        • Chow S.S.
        On behalf of the Australian and New Zealand Neonatal Network, et al. Improving incidence trends of severe intraventricular haemorrhages in preterm infants <32 weeks gestation: a cohort study.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 145-150
        • Handley S.
        • Passarella M.
        • Lee H.C.
        • Lorch S.A.
        Incidence trends and risk factor variation in severe intraventricular hemorrhage across a population based cohort.
        J Pediatr. 2018; 200: 24-29
        • Loureiro Gonzalez B.
        • Jose Ignacio J.
        • Hallman M.
        • Hummler H.
        • Halliday H.
        • Sjörs G.
        • et al.
        PS-161 Severe intraventricular haemorrhage and periventricular leukomalacia rates in very low gestational age infants admitted to Euroneonet participant units.
        Arch Dis Child. 2014; 99
        • Glass T.
        • Chau V.
        • Grunau R.E.
        • Synnes A.
        • Guo T.
        • Duerden E.G.
        • et al.
        Multiple postnatal infections in newborns born preterm predict delayed maturation of motor pathways at term-equivalent age with poorer motor outcomes at 3 years.
        J Pediatr. 2018; 196: 91-97e1
        • Shah D.
        • Doyle L.W.
        • Anderson P.J.
        • Bear M.
        • Daley A.J.
        • Hunt R.W.
        • et al.
        Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term.
        J Pediatr. 2008; 153
        • Volpe J.
        Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants.
        J Pediatr. 2008; 153
        • Adams-Chapman I.
        • Stoll B.J.
        Neonatal infection and longterm neurodevelopmental outcome in the preterm infant.
        Curr Opin Infect Dis. 2006; 19: 290-297
        • Lee E.
        • Kim E.-K.
        • Shin S.H.
        • Choi Y.-H.
        • Jung Y.H.
        • Kim S.Y.
        • et al.
        Factors associated with neurodevelopment in preterm infants with systematic inflammation.
        BMC Pediatr. 2021; 21
        • Chau V.
        • Brant R.
        • Poskitt K.J.
        • Tam E.W.Y.
        • Synnes A.
        • Miller S.P.
        Postnatal infection is associated with widespread abnormalities of brain development in premature newborns.
        Pediatr Res. 2012; 71: 274-279
        • Neubauer V.
        • Junker D.
        • Griesmaier E.
        • Schocke M.
        • Kiechl-Kohlendorfer U.
        Bronchopulmonary dysplasia is associated with delayed structural brain maturation in preterm infants.
        Neonatology. 2015; 107: 179-184
        • Lee J.-M.
        • Choi Y.-H.
        • Hong J.
        • Kim N.Y.
        • Kim E.B.
        • Lim J.-S.
        • et al.
        Bronchopulmonary dysplasia is associated with altered brain volumes and white matter microstruccture in preterm infants.
        Neonatology. 2019; 116: 163-170
        • Ball G.
        • Counsell S.J.
        • Anjari M.
        • Merchant N.
        • Arichi T.
        • Doria V.
        • et al.
        An optimised tract-based spatial statistics protocol for neonates: applications to prematurity and chronic lung disease.
        Neuroimage. 2010; 53: 94-102
        • Bonifacio S.
        • Glass H.C.
        • Chau V.
        • Berman J.I.
        • Xu D.
        • Brant
        • et al.
        Extreme premature birth is not associated with impaired development of brain microstructure.
        J Pediatr. 2010; 157
        • Zwicker J.
        • Grunau R.E.
        • Adams E.
        • Chau V.
        • Brant R.
        • Poskitt K.J.
        • et al.
        Score for neonatal acute physiology-II and neonatal pain predict Corticospinal tract development in premature newborns.
        Pediatr Neurol. 2013; 48
        • Ota E.
        • Mori R.
        • Middleton P.
        • Tobe-Gai R.
        • Mahomed K.
        • Miyazaki C.
        • et al.
        Zinc supplementation for improving pregnancy and infant outcome.
        Cochrane Database Syst Rev. 2015; 2015CD000230
        • Medley N.
        • Vogel J.P.
        • Care A.
        • Alfirevic Z.
        Interventions during pregnancy to prevent preterm birth: an overview of Cochrane systematic reviews.
        Cochrane Database Syst Rev. 2018; 11
        • Hoffman M.
        • Goudar S.S.
        • Kodkany B.S.
        • Metgud M.
        • Somannavar M.
        • Okitawutshu J.
        • et al.
        Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial.
        Lancet. 2020; 395: 285-293
        • Kildea S.
        • Gao Y.
        • Hickey S.
        • et al.
        Reducing preterm birth amongst Aboriginal and Torres Strait Islander babies: a prospective cohort study, Brisbane, Australia.
        EClinicalMedicine. 2019; 12: 43-51
        • Bierstone D.
        • Wagenaar N.
        • Gano D.L.
        • Guo T.
        • Georgio G.
        • Groenendaal F.
        • et al.
        Association of histologic chorioamnionitis with perinatal brain injury and early childhood neurodevelopmental outcomes among preterm neonates.
        JAMA Pediatr. 2018; 172: 534-541
        • Granger C.
        • Spittle A.J.
        • Walsh J.
        • Pyman J.
        • Anderson P.J.
        • Thompson D.K.
        • et al.
        Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age.
        BMC Pediatr. 2018; 18
        • Shi Z.
        • Ma L.
        • Luo K.
        • Bajaj M.
        • Chawla S.
        • Natarajan G.
        • et al.
        Chorioamnionitis in the development of cerebral palsy: a meta-analysis and systematic review.
        Pediatrics. 2017; 139
        • Miller S.
        • Huppi P.S.
        • Mallard C.
        The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.
        J Physiol. 2016; 594: 807-823
        • Streimish I.
        • Ehrenkranz R.A.
        • Allred E.N.
        • O'Shea T.M.
        • Kuban K.C.
        • Paneth N.
        • et al.
        Birth weight- and fetal weight-growth restriction: impact on neurodevelopment.
        Early Hum Dev. 2012; 88: 765-771
        • Nardozza L.M.M.C.A.
        • Zamarian A.C.P.
        • Mazzola J.B.
        • Silva C.P.
        • Marçal V.M.G.
        • et al.
        Fetal growth restriction: current knowledge.
        Arch Gynecol Obstet. 2017; 295: 1061-1077
        • Garfinkle J.
        • Miller S.P.
        The placenta and neurodevelopment in preterm newborns.
        NeoReviews. 2018; 19: e456-e466
        • Bangma J.
        • Hartwell H.
        • Santos Jr., H.P.
        • O'Shea T.M.
        • Fry R.C.
        Placental programming, perinatal inflammation, and neurodevelopment impairment among thsoe born extremely preterm.
        Pediatr Res. 2021; 89: 326-335
        • Roberts D.
        • Brown J.
        • Medley N.
        • Dalziel S.R.
        Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.
        Cochrane Database Syst Rev. 2017; : CD0004454
        • ACOG. Committee opinion no
        677: antenatal corticosteroid therapy for fetal maturation.
        Obstet Gynecol. 2016; 128: e187-e194
        • Xu H.
        • Hu F.
        • Sado Y.
        • Ninomiya Y.
        • Borza D.B.
        • Ungvari Z.
        • et al.
        Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone.
        J Neurosci Res. 2008; 86: 1482-1500
        • Carlo W.
        • McDonald S.
        • Fanaroff A.
        • Vohr B.
        • Stoll B.
        • Ehrenkranz R.
        • et al.
        Association of antenatal corticosteroids with mortality and neurodevelopmental outcomes among infants born at 22 to 25 weeks' gestation.
        JAMA. 2011; 306: 2348-2358
        • Park C.K.
        • Isayama T.
        • McDonald S.D.
        Antenatal corticosteroid therapy before 24 weeks of gestation: a systematic review and meta-analysis.
        Obstet Gynecol. 2016; 127: 715-725
        • McGoldrick E.
        • Stewart F.
        • Parker R.
        • Dalziel S.R.
        Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth.
        Cochrane Database Syst Rev. 2020; : CD004454
        • Inoue H.
        • Ochiai M.
        • Yasuoka K.
        • Tanaka K.
        • Kurata H.
        • Fujiyoshi J.
        • et al.
        Early mortality and morbidity in infants with birth weight of 500 grams or less in Japan.
        J Pediatr. 2017; 190 (e3): 112-117
        • Sugimoto J.
        • Romani A.
        • Valentin-Torres A.M.
        • Luciano A.A.
        • Ramirez Kitchen C.M.
        • Funderburg N.
        • et al.
        Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism.
        J Immunol. 2012; 188 ([published Online First: Epub Date]|): 6338-6346https://doi.org/10.4049/jimmunol.1101765
        • Barks J.D.
        • Silverstein F.S.
        Excitatory amino acids contribute to the pathogenesis of perinatal hypoxic-ischemic brain injury.
        Brain Pathol. 1992; 2 ([published Online First: Epub Date]|): 235-243https://doi.org/10.1111/j.1750-3639.1992.tb00697.x
        • Skajaa K.
        • Forman A.
        • Andersson K.E.
        Effects of magnesium on isolated human fetal and maternal uteroplacental vessels.
        Acta Physiol Scand. 1990; 139: 551-559
        • Rantonen T.
        • Ju Grönlund
        • Jalonen J.O.
        • Ekblad U.U.
        • Kääpä P.O.
        • Kero P.O.
        • et al.
        Comparison of the effects of antenatal magnesium sulphate and ritodrine exposure on circulatory adaptation in preterm infants.
        Clin Physiol Funct Imag. 2002; 22: 13-17
        • ACOG
        Magnesium sulphate before anticipated preterm birth for neuroprotection. Committee Opinion. Secondary Magnesium sulphate before anticipated preterm birth for neuroprotection.
        Committee Opinion, 2010 (accessed 8 April 2022)
        • De Silva D.A.
        • Synnes A.R.
        • von Dadelszen P.
        • Lee T.
        • Bone J.N.
        • Magee L.A.
        MAGnesium sulphate for fetal neuroprotection to prevent Cerebral Palsy (MAG-CP)—implementation of a national guideline in Canada.
        Implement Sci. 2018; 13: 1-16
        • Doyle L.W.S.A.
        • Olsen J.E.
        • Kwong A.B.R.
        • Lee K.
        • et al.
        Translating antenatal magnesium sulphate neuroprotection for infants born< 28 weeks' gestation into practice: a geographical cohort study.
        Aust N Z Obstet Gynaecol. 2021; 61: 513-518
        • Wolf H.
        • Huusom L.
        • Weber T.
        • Piedvache A.
        • Schmidt S.
        • Norman M.
        • et al.
        Use of magnesium sulfate before 32 weeks of gestation: a European population-based cohort study.
        BMJ Open. 2017; 7e013952
        • Amer R.
        • Moddemann D.
        • Seshia M.
        • Alvaro R.
        • Synnes A.
        • Lee K.
        • et al.
        Neurodevelopmental outcomes of infants born at< 29 weeks of gestation admitted to Canadian neonatal intensive care units based on location of birth.
        J Pediatr. 2018; 196 (e1): 31-37
        • Helenius K.
        • Longford N.
        • Lehtonen L.
        • Modi N.
        • Gale C.
        Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: observational cohort study with propensity score matching.
        BMJ. 2019; 367
        • Lasswell S.
        • Barfield W.D.
        • Rochat R.W.
        • Blackmon L.
        Perinatal regionalization for very low-birth-weight and very preterm infants: a meta-analysis.
        JAMA. 2010; 304: 992-1000
        • Hossain S.
        • Shah P.S.
        • Ye X.Y.
        • Darlow B.A.
        • Lee S.K.
        • Lui K.
        • et al.
        Outborns or inborns: where are the differences? A comparison study of very preterm neonatal intensive care unit infants cared for in Australia and New Zealand and in Canada.
        Neonatology. 2016; 109: 76-84
        • Goh A.
        • Browning-Carmo K.
        • Morris J.
        • Berry A.
        • Wall M.
        • Abdel-Latif M.
        Outcomes of high-risk obstetric transfers in New South Wales and the Australian Capital Territory: the high-risk obstetric transfer study.
        Aust N Z J Obstet Gynaecol. 2015; 55: 434-439
        • Watson H.M.J.
        • Carlisle N.
        • Ratnavel N.W.T.
        • Zaima A.
        • et al.
        All the right moves: why in utero transfer is both important for the baby and difficult to achieve and new strategies for change.
        F1000Research. 2020; 9 (Faculty Rev): 979
      2. Victoria SC. Guidance: extreme prematurity. Secondary guidance: extreme prematurity 2021. https://www.bettersafercare.vic.gov.au/clinical-guidance/neonatal/extreme-prematurity [accessed 8 April 2022].

        • Mactier H.
        • Bates S.E.
        • Johnston T.
        • Lee-Davey C.
        • Marlow N.
        • Mulley K.
        • et al.
        Perinatal management of extreme preterm birth before 27 weeks of gestation: a framework for practice.
        Arch Dis Child Fetal Neonatal Ed, 2020: 232-239
        • Kane S.
        • Groom K.
        • Crowther C.A.
        How can obstetricians improve outcomes for infants born extremely preterm?.
        Semin Perinatol. 2021; 151477
        • Högberg U.
        • Holmgren P.
        Infant mortality of very preterm infants by mode of delivery, institutional policies and maternal diagnosis.
        Acta Obstet Gynecol Scand. 2007; 86: 693-700
        • Deulofeut R.
        • Sola A.
        • Lee B.
        • Buchter S.
        • Rahman M.
        • Rogido M.
        The impact of vaginal delivery in premature infants weighing less than 1,251 grams.
        Obstet Gynecol. 2005; 105: 525-531
        • Jarde A.
        • Feng Y.Y.
        • Viaje K.A.
        • Shah P.S.
        • McDonald S.D.
        Vaginal birth vs caesarean section for extremely preterm vertex infants: a systematic review and meta-analyses.
        Arch Gynecol Obstet. 2020; 301 ([published Online First: Epub Date]|): 447-458https://doi.org/10.1007/s00404-019-05417-0
        • Bhatt S.
        • Alison B.J.
        • Wallace E.M.
        • Crossley K.J.
        • Gill A.W.
        • Kluckow M.
        • te Pas A.B.
        • Morley C.J.
        • Polglase G.R.
        • Hooper S.B.
        Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs.
        J Physiol. 2013; 591: 2113-2126
        • Hooper SB. tPA.
        • Lang J.
        • van Vonderen J.J.
        • Roehr C.C.
        • Kluckow M.
        • Gill A.W.
        • Wallace E.M.
        • Polglase G.R.
        Cardiovascular transition at birth: a physiological sequence.
        Pediatr Res. 2015; 77: 608-614
        • Rabe H.
        • Gyte G.M.I.
        • Díaz-Rossello J.L.
        • Duley L.
        Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and infant outcomes.
        Cochrane Database Syst Rev. 2019; 9CD003248
        • Robledo K.
        • Tarnow-Mordi W.O.
        • Rieger I.
        • Suresh P.
        • Martin A.
        • Yeung C.
        • et al.
        Effects of delayed versus immediate umbilical cord clamping in reducing death or major disability at 2 years corrected age among very preterm infants (APTS): a multicentre, randomised clinical trial.
        Lancet Child Adolesc Health. 2022; 6: 150-157
        • te Pas A.
        • Hooper S.B.
        • Dekker J.
        The changing landscape in supporting pretern infants at birth.
        Neonatology. 2019; 115: 392-397
        • Vela-Huerta M.
        • Aguilera-López A.
        • Alarcón-Santos S.
        • Amador N.
        • Aldana-Valenzuela C.
        • Heredia A.
        Cardiopulmonary adaptation in large for gestastional age infants of diabetic and nondiabetic mothers.
        Acta Paediatr. 2007; 96: 1303-1307
        • Kapadia V.
        • Oei J.L.
        Optimizing oxygen therapy for preterm infants at birth: are we there yet?.
        Semin Fetal Neonatal Med. 2020; 25
        • Maiwald C.
        • Niemarkt H.J.
        • Poets C.F.
        • Urschitz M.S.
        • König J.
        • Hummler H.
        • et al.
        Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO 2-C) on outcome of extremely preterm infants - study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy.
        BMC Pediatr. 2019; 19
        • Poets C.F.R.R.
        • Schmidt B.
        • Whyte R.K.
        • Asztalos E.V.
        • Bader D.
        • et al.
        Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants.
        JAMA. 2015; 314: 595-603
        • Gerstner B.
        • DeSilva T.M.
        • Genz K.
        • Armstrong A.
        • Brehmer F.
        • Neve R.L.
        • et al.
        Hyperoxia causes maturation-dependent cell death in the developing white matter.
        J Neurosci. 2008; 28: 1236-1245
        • Brehmer F.
        • Bendix I.
        • Prager S.
        • van de Looij Y.
        • Reinboth B.S.
        • Zimmermanns J.
        • et al.
        Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage.
        PLoS One. 2012; 7
        • Mitra S.
        • Singh B.
        • El-Naggar W.
        • McMillan D.D.
        Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: a systematic review and meta-analysis.
        J Perinatol. 2018; 38: 351-360
        • Schmidt B.
        • Asztalos E.V.
        • Roberts R.S.
        • et al.
        Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms.
        JAMA. 2003; 289: 1124-1129
        • Mian Q.
        • Cheung P.-Y.
        • O'Reilly M.
        • Barton S.K.
        • Polglase G.R.
        • Schmölzer G.M.
        Impact of delivered tidal volume on the occurrence of intraventricular haemorrhage in preterm infants during positive pressure ventilation in the delivery room.
        Arch Dis Child Fetal Neonatal. 2019; 104: F57-F62
        • Morley C.J.D.P.
        • Doyle L.W.
        • Brion L.P.
        • Hascoet J.-M.
        • Carlin J.B.
        • et al.
        Nasal CPAP or intubation at birth for very preterm infants.
        N Engl J Med. 2008; 358: 700-708
        • Lemyre B.
        • Davis P.G.
        • De Paoli A.G.
        • Kirpalani H.
        Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation.
        Cochrane Database Syst Rev. 2017; CD003212
        • Goel D.
        • Oei J.L.
        • Smyth J.
        • Schindler T.
        Diaphragm-triggered non-invasive respiratory support in preterm infants.
        Cochrane Database Syst Rev. 2020; : CD01293
        • Guillot M.
        • Guo T.
        • Ufkes S.
        • Schneider J.
        • Synnes A.
        • Chau V.
        • et al.
        Mechanical ventilation duration, brainstem development, and neurodevelopment in children born preterm: a prospective cohort study.
        J Pediatr. 2020; 226 (e3): 87-95
        • Shankaran S.
        • Langer J.C.
        • Kazzi S.N.
        • Laptook A.R.
        • Walsh M.
        Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants.
        Pediatrics. 2006; 118: 1654-1659
        • Giannakopoulou C.
        • Korakaki E.
        • Manoura A.
        • Bikouvarakis S.
        • Papageorgiou M.
        • Gourgiotis D.
        • et al.
        Significance of hypocarbia in the development of periventricular leukomalacia in preterm infants.
        Pediatr Int. 2004; 46: 268-273
        • Resch B.
        • Neubauer K.
        • Hofer N.
        • Resch E.
        • Maurer U.
        • Haas J.
        • et al.
        Episodes of hypocarbia and early-onset sepsis are risk factors for cystic periventricular leukomalacia in the preterm infant.
        Early Hum Dev. 2012; 88: 27-31
        • Thome U.
        • Genzel-Boroviczeny O.
        • Bohnhorst B.
        • Schmid M.
        • Fuchs H.
        • Rohde O.
        • et al.
        Neurodevelopmental outcomes of extremely low birthweight infants randomised to different PCO2 targets: the PHELBI follow-up study.
        Arch Dis Child Fetal Neonatal Ed. 2017; 102: F376-F382
        • Wong S.
        • Chim M.
        • Allen J.
        • Butler A.
        • Tyrrell J.
        • Hurley T.
        • et al.
        Carbon dioxide levels in neonates: what are safe parameters?.
        Pediatr Res. 2021; ([published Online First: Epub Date]|)https://doi.org/10.1038/s41390-021-01473-y
        • Abdel-Latif M.
        • Davis P.G.
        • Wheeler K.I.
        • De Paoli A.G.
        • Dargaville P.A.
        Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome.
        Cochrane Database Syst Rev. 2021; 5
        • Schmidt B.
        • Roberts R.S.
        • Anderson P.J.
        • Asztalos E.V.
        • Costantini L.
        • Davis P.G.
        • et al.
        Academic performance, motor function, and behavior 11 years after neonatal caffeine citrate therapy.
        JAMA Pediatr. 2017; 171: 564-572
        • Lodha A.
        • Entz R.
        • Synnes A.
        • Creighton D.
        • Yusuf K.
        • Lapointe A.
        • et al.
        Early caffeine administration and neurodevelopmental outcomes in preterm infants.
        Pediatrics. 2019; : 143
        • Doyle L.
        • Cheong J.L.
        • Hay S.
        • Manley B.J.
        • Halliday H.L.
        Early (< 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants.
        Cochrane Database Syst Rev. 2021; 10
        • Doyle L.
        • Cheong J.L.
        • Hay S.
        • Manley B.J.
        • Halliday H.L.
        Late (≥ 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants.
        Cochrane Database Syst Rev. 2021; 11
        • Kluckow M.
        • Evans N.
        Low systemic blood flow in the preterm infant.
        Semin Neonatol. 2001; 6: 75-84
        • Kluckow M.
        • Evans N.
        Low superior vena cava flow and intraventricular haemorrhage in preterm infants.
        Arch Dis Child Fetal Neonatal Ed. 2000; 82: 188-194
        • Cayabyab R.M.C.
        • Seri I.
        Definition of hypotension and assessment of hemodynamics in the preterm neonate.
        J Perinatol. 2009; 29: S58-S62
        • Rhee C.
        • Sortica da Costa C.
        • Austin T.
        • Brady K.M.
        • Czosnyka M.
        • Lee J.K.
        Neonatal cerebrovascular autoregulation.
        Pediatr Res. 2018; 84: 602-610
        • Barrington K.
        Hypotension and shock in the preterm infant.
        Semin Fetal Neonatal Med. 2008; 13: 16-23
        • Alderliesten T.
        • Lemmers P.M.A.
        • Smarius J.J.M.
        • van de Vosse R.E.
        • Baerts W.
        • van Bel F.
        Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage.
        J Pediatr. 2013; 162: 698-704.e2
        • Sung S.
        • Chang Y.S.
        • Kim J.
        • Choi J.H.
        • Ahn S.Y.
        • Park W.S.
        Natural evolution of ductus arteriosus with noninterventional conservative management in extremely preterm infants born at 23-28 weeks of gestation.
        PLoS One. 2019; 14e0212256
        • Sung S.
        • Lee M.H.
        • Ahn Sy
        • Chang Y.S.
        • Park W.S.
        Effect of nonintervention vs oral ibuprofen in patent ductus arteriosus in preterm infants: a randomized clinical trial.
        JAMA Pediatr. 2020; 174: 755-763
        • Koch J.
        • Hensley G.
        • Roy L.
        • Brown S.
        • Ramaciotti C.
        • Rosenfeld C.R.
        Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 grams or less.
        Pediatrics. 2006; 117: 1113-1121
        • Mitra S.
        • Scrivens A.
        • von Kursell A.M.
        • Disher T.
        Early treatment versus expectant management of hemodynamically significant patent ductus arteriosus for preterm infants.
        Cochrane Database Syst Rev. 2020; 12: CD013278
        • Inoue H.
        • Ochiai M.
        • Sakai Y.
        • Yasuoka K.
        • Tanaka K.
        • Ichiyama M.
        • et al.
        Neurodevelopmental outcomes in infants with birth weight ≤500 g at 3 years of age.
        Pediatrics. 2018; 142e20174286
        • Fanaroff A.
        • Fanaroff J.M.
        Advances in neonatal infections.
        Am J Perinatol. 2020; 37: S5-S9
        • Hintz S.
        • Kendrick D.E.
        • Stoll B.J.
        • Vohr B.R.
        • Fanaroff A.A.
        • Donovan E.F.
        • et al.
        Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis.
        Pediatrics. 2005; 115: 696-703
        • Underwood M.
        Probiotics and the prevention of necrotizing enterocolitis.
        J Pediatr Surg. 2019; 54: 405-412
        • Akar M.
        • Eras Z.
        • Oncel M.Y.
        • Arayici S.
        • Guzoglu N.
        • Canpolat F.E.
        • et al.
        Impact of oral probiotics on neurodevelopmental outcomes in preterm infants.
        J Matern Fetal Neonatal Med. 2017; 30: 411-415
        • Gephart S.
        • Newnam K.
        • Wyles C.
        • Bethel C.
        • Porter C.
        • Quinn M.C.
        • et al.
        Development of the NEC-Zero Toolkit: supporting reliable implementation of necrotizing enterocolitis prevention and recognition.
        Neonatal Netw. 2020; 39: 6-15
        • Lorthe E.
        • Torchin H.
        • Delorme P.
        • Ancel P.-Y.
        • Marchand-Martin L.
        • Foix-L’Hélias L.
        • et al.
        Preterm premature rupture of membranes at 22-25 weeks' gestation: perinatal and 2-year outcomes within a national population-based study (EPIPAGE-2).
        Am J Obstet Gynecol. 2018; 219 (98.e14): 298.e1
        • Brumbaugh J.
        • Hansen N.I.
        • Bell E.F.
        • Sridhar A.
        • Carlo W.A.
        • Hintz S.R.
        • et al.
        Outcomes of extremely preterm infants with birth weight less than 400 g.
        JAMA Pediatr. 2019; 173: 434-445
        • Hwang J.
        • Jung E.
        • Lee B.S.
        • Kim E.A.R.
        • Kim K.S.
        Survival and morbidities in infants with birth weight less than 500 g: a nationwide cohort study.
        J Kor Med Sci. 2021; 36e206
        • Coviello C.
        • Keunen K.
        • Kersbergen K.J.
        • Groenendaal F.
        • Leemans A.
        • Peels B.
        • et al.
        Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns.
        Pediatr Res. 2018; 83 (Pediatr Res 2018;83(1–1):102-110): 102-110
        • Sammallahti S.
        • Heinonen K.
        • Andersson S.
        • Lahti M.
        • Pirkola S.
        • Lahti J.
        • et al.
        Growth after late-preterm birth and adult cognitive, academic, and mental health outcomes.
        Pediatr Res. 2017; 81: 767-774
        • Belfort M.
        • Ehrenkranz R.A.
        Neurodevelopmental outcomes and nutritional strategies in very low birthweight infants.
        Semin Fetal Neonatal Med. 2017; 22: 42-48
        • Dit Trolli S.
        • Kermorvant-Duchemin E.
        • Huon C.
        • Bremond-Gignac D.
        • Lapillonne A.
        Early lipid supply and neurological development at one year in very low birth weight (VLBW) preterm infants.
        Early Hum Dev. 2012; 88: S25-S29
        • Shim S.
        • Ahn H.M.
        • Cho S.J.
        • Park E.A.
        Early aggressive nutrition enhances language development in very low-birthweight infants.
        Pediatr Int. 2014; 56: 845-850
        • Beauport L.
        • Schneider J.
        • Faouzi M.
        • Hagmann P.
        • Huppi P.S.
        • Tolsa J.F.
        • et al.
        Impact of early nutritional intake on preterm brain: a magnetic resonance imaging study.
        J Pediatr. 2017; 181 (e1): 29-36
        • Cormack B.
        • Harding J.E.
        • Miller S.P.
        • Bloomfield F.H.
        The influence of early nutrition on brain growth and neurodevelopment in extremely preterm babies: a narrative review.
        Nutrients. 2019; : 11
        • Hortensius L.
        • Janson E.
        • van Beek P.E.
        • Groenendaal F.
        • Claessens N.H.P.
        • Swanenburg de Veye H.R.N.
        • et al.
        Nutritional intake, white matter integrity, and neurodevelopment in extremely preterm born infants.
        Nutrients. 2021; 13: 3409
        • The ProVIDe RCT
        The impact of additional intravenous protein on development in extremely low birthweight babies Perinatal Society of Australia and New Zealand.
        PSANZ) Congress, Adelaide, Australia2022
        • Binder C.
        • Buchmayer J.
        • Thajer A.
        • Giordano V.
        • Schmidbauer V.
        • Harreiter K.
        • et al.
        Association between fat-free mass and brain size in extremely preterm infants.
        Nutrients. 2021; 13
        • Ehrenkranz R.
        • Dusick A.M.
        • Vohr B.R.
        • Wright L.L.
        • Wrage L.A.
        • Poole W.K.
        Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants.
        Pediatrics. 2006; 117: 1253-1261
        • Hortensius L.
        • van Elburg R.M.
        • Nijboer C.H.
        • Benders M.J.N.L.
        • de Theije C.G.M.
        Postnatal nutrition to improve brain development in the preterm infatn: a systematic review from bench to bedside.
        Front Physiol. 2019; 10: 961
        • Brummelte S.
        • Grunau R.E.
        • Chau V.
        • Poskitt K.J.
        • Brant R.
        • Vinall J.
        • et al.
        Procedural pain and brain development in premature newborns.
        Ann Neurol. 2012; 71: 385-396
        • Grunau R.
        • Whitfield M.F.
        • Petrie-Thomas J.
        • Synnes A.R.
        • Cepeda I.L.
        • Keidar A.
        • et al.
        Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants.
        Pain. 2009; 143: 138-146
        • Ranger M.
        • Zwicker J.G.
        • Chau C.M.Y.
        • Park M.T.M.
        • Chakravarthy M.M.
        • Poskitt K.
        • et al.
        Neonatal pain and infection relate to smaller cerebellum in very preterm children at school age.
        J Pediatr. 2015; 167 (e1): 292-298
        • Duerden E.
        • Grunau R.E.
        • Chau V.
        • Gorenendaal F.
        • Guo T.
        • Chakravarty M.M.
        • et al.
        Association of early skin breaks and neonatal thalamic maturation: a modifiable risk?.
        Neurology. 2020; 95: e3420-e3427
        • Campbell-Yeo M.E.M.
        • Benoit B.
        Assessment and management of pain in preterm infants: a practice update.
        Children. 2022; 9
        • McPherson C.
        • Ortinau C.M.
        • Vesoulis Z.
        Practical approaches to sedation and analgesia in the newborn.
        J Perinatol. 2021; 41: 383-395
        • Goldberg R.N.
        • Joshi A.
        • Moscoso P.
        • Castillo T.
        The effect of head position on intracranial pressure in the neonate.
        Crit Care Med. 1983; 11: 428-430
        • Metallinou D.
        • Lazarou E.
        • Lykeridou A.
        Pharmacological and non-pharmacological brain-focused clinical practices for premature neonates at high risk of neuronal injury.
        Maedica. 2021; 16: 281
        • de Bijl-Marcus K.A.
        • Brouwer A.J.
        • de Vries L.S.
        • van Wezel-Meijler G.
        The effect of head positioning and head tilting on the incidence of intraventricular hemorrhage in very preterm infants: a systematic review.
        Neonatology. 2017; 111 ([published Online First: Epub Date]|): 267-279https://doi.org/10.1159/000449240
        • Minot K.
        • Kramer K.P.
        • Butler C.
        • Foster M.
        • Gregory C.
        • Haynes K.
        • et al.
        Increasing early skin-to-skin in extremely low birth weight infants.
        Neonatal Netw. 2021; 40: 242-250
        • Cirrito B.
        • Gordon J.M.
        • Basden F.L.
        • Canals-Alonso J.
        • Green N.R.
        • Slezak A.
        • et al.
        An EBP to promote early skin-to-skin care intervention and mother's own milk feedings in the extremely low birth weight population.
        Neonatal Netw. 2020; 39: 330-338
        • Boundy E.O.D.R.
        • Spiegelman D.
        • Fawzi W.W.
        • MIssmer S.A.
        • Lieberman E.
        • et al.
        Kangaroo mother care and neonatal outcomes: a meta-analysis.
        Pediatrics. 2016; 137
        • Peters K.
        • Rosychuk R.J.
        • Hendson L.
        • Coté J.J.
        • McPherson C.
        • Tyebkhan J.M.
        Improvement of short- and long0term outcomes for very low birth weight infants: Edmonton NIDCAP trial.
        Pediatrics. 2009; 124: 1009-1020
        • Belfort M.
        • Anderson P.J.
        • Nowak V.A.
        • Lee K.J.
        • Molesworth C.
        • Thompson D.K.
        • et al.
        Breast mlik feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks' gestation.
        J Pediatr. 2016; 177: 133-139.e1
        • Pineda R.
        • Guth R.
        • Herring A.
        • Reynolds L.
        • Oberle S.
        • Smith J.
        Enhancing sensory experiences for very preterm infants in the NICU: an integrative review.
        J Perinatol. 2017; 37: 323-332
        • Morag I.
        • Ohlsson A.
        Cycled light in the intensive care unit for preterm and low birth weight infants.
        Cochrane Database Syst Rev. 2016; 2016: CD006982
        • Braid S.
        • Bernstein J.
        Improved cognitive development in preterm infants with shared book reading.
        Neonatal Netw. 2015; 34: 10-17
        • Passera S.
        • Boccazzi M.
        • Bokobza C.
        • et al.
        Therapeutic potential of stem cells for preterm infant brain damage: can we move from the heterogeneity of preclinical and clinical studies to established therapeutics?.
        Biochem Pharmacol. 2021; 186 ([published Online First: Epub Date]|)114461https://doi.org/10.1016/j.bcp.2021.114461
        • Ahn S.Y.
        • Chang Y.S.
        • Sung S.I.
        • Park W.S.
        Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-Escalation clinical trial.
        Stem Cells Transl Med. 2018; 7 ([published Online First: Epub Date]|): 847-856https://doi.org/10.1002/sctm.17-0219
        • Baik N.
        • Urlesberger B.
        • Schwaberger B.
        • Schmolzer G.M.
        • Avian A.
        • Pichler G.
        Cerebral haemorrhage in preterm neonates: does cerebral regional oxygen saturation during the immediate transition matter? Archives of disease in childhood.
        Fetal Neonatal Ed. 2015; 100 ([published Online First: Epub Date]|): F422-F427https://doi.org/10.1136/archdischild-2014-307590
        • Urlesberger B.
        • Kratky E.
        • Rehak T.
        • et al.
        Regional oxygen saturation of the brain during birth transition of term infants: comparison between elective cesarean and vaginal deliveries.
        J Pediatr. 2011; 159 ([published Online First: Epub Date]|): 404-408https://doi.org/10.1016/j.jpeds.2011.02.030
        • Cerbo R.M.
        • Scudeller L.
        • Maragliano R.
        • et al.
        Cerebral oxygenation, superior vena cava flow, severe intraventricular hemorrhage and mortality in 60 very low birth weight infants.
        Neonatology. 2015; 108 ([published Online First: Epub Date]|): 246-252https://doi.org/10.1159/000438452
        • Dent C.L.
        • Spaeth J.P.
        • Jones B.V.
        • et al.
        Brain magnetic resonance imaging abnormalities after the Norwood procedure using regional cerebral perfusion.
        J Thorac Cardiovasc Surg. 2006; 131 ([published Online First: Epub Date]|): 190-197https://doi.org/10.1016/j.jtcvs.2005.10.003
        • Hou X.
        • Ding H.
        • Teng Y.
        • et al.
        Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy.
        Physiol Meas. 2007; 28 ([published Online First: Epub Date]|): 1251-1265https://doi.org/10.1088/0967-3334/28/10/010
        • Kurth C.D.
        • McCann J.C.
        • Wu J.
        • Miles L.
        • Loepke A.W.
        Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets.
        Anesth Analg. 2009; 108 ([published Online First: Epub Date]|): 1268-1277https://doi.org/10.1213/ane.0b013e318196ac8e
        • Balegar K.K.
        • Stark M.J.
        • Briggs N.
        • Andersen C.C.
        Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants.
        J Pediatr. 2014; 164 ([published Online First: Epub Date]|): 475-480 e1https://doi.org/10.1016/j.jpeds.2013.10.041
        • Noori S.
        • McCoy M.
        • Anderson M.P.
        • Ramji F.
        • Seri I.
        Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants.
        J Pediatr. 2014; 164 (e13, [published Online First: Epub Date]|): 264-270https://doi.org/10.1016/j.jpeds.2013.09.045
        • Alderliesten T.
        • Lemmers P.M.
        • Smarius J.J.
        • van de Vosse R.E.
        • Baerts W.
        • van Bel F.
        Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage.
        J Pediatr. 2013; 162 ([published Online First: Epub Date]|): 698-704 e2https://doi.org/10.1016/j.jpeds.2012.09.038
        • Tsuji M.
        • Saul J.P.
        • du Plessis A.
        • et al.
        Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants.
        Pediatrics. 2000; 106: 625-632
        • Vesoulis Z.A.
        • Liao S.M.
        • Trivedi S.B.
        • Ters N.E.
        • Mathur A.M.
        A novel method for assessing cerebral autoregulation in preterm infants using transfer function analysis.
        Pediatr Res. 2016; 79 ([published Online First: Epub Date]|): 453-459https://doi.org/10.1038/pr.2015.238
        • Caicedo A.
        • Naulaers G.
        • Lemmers P.
        • van Bel F.
        • Wolf M.
        • Van Huffel S.
        Detection of cerebral autoregulation by near-infrared spectroscopy in neonates: performance analysis of measurement methods.
        J Biomed Opt. 2012; 17 ([published Online First: Epub Date]|)117003https://doi.org/10.1117/1.JBO.17.11.117003
        • Gilmore M.M.
        • Stone B.S.
        • Shepard J.A.
        • Czosnyka M.
        • Easley R.B.
        • Brady K.M.
        Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant.
        J Perinatol : Off J California Perinat Assoc. 2011; 31 ([published Online First: Epub Date]|): 722-729https://doi.org/10.1038/jp.2011.17
        • Verhagen E.A.
        • Hummel L.A.
        • Bos A.F.
        • Kooi E.M.
        Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants.
        Clin Neurophysiol. 2014; 125 ([published Online First: Epub Date]|): 47-52https://doi.org/10.1016/j.clinph.2013.07.001
        • Pichler G.
        • Urlesberger B.
        • Baik N.
        • et al.
        Cerebral oxygen saturation to guide oxygen delivery in preterm neonates for the immediate transition after birth: a 2-center randomized controlled pilot feasibility trial.
        J Pediatr. 2016; 170 (8 e1-4) ([published Online First: Epub Date]|): 73https://doi.org/10.1016/j.jpeds.2015.11.053
        • Hyttel-Sorensen S.
        • Pellicer A.
        • Alderliesten T.
        • et al.
        Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial.
        Bmj. 2015; 350 ([published Online First: Epub Date]|): g7635https://doi.org/10.1136/bmj.g7635
      3. https://clinicaltrials.gov/ct2/show/NCT03770741. Secondary https://clinicaltrials.gov/ct2/show/NCT03770741.

        • Juul S.E.
        • Anderson D.K.
        • Li Y.
        • Christensen R.D.
        Erythropoietin and erythropoietin receptor in the developing human central nervous system.
        Pediatr Res. 1998; 43 ([published Online First: Epub Date]|): 40-49https://doi.org/10.1203/00006450-199801000-00007
        • Rangarajan V.
        • Juul S.E.
        Erythropoietin: emerging role of erythropoietin in neonatal neuroprotection.
        Pediatr Neurol. 2014; 51 ([published Online First: Epub Date]|): 481-488https://doi.org/10.1016/j.pediatrneurol.2014.06.008
        • Fischer H.S.
        • Reibel N.J.
        • Buhrer C.
        • Dame C.
        Prophylactic early erythropoietin for neuroprotection in preterm infants: a meta-analysis.
        Pediatrics. 2017; 139 ([published Online First: Epub Date]|)https://doi.org/10.1542/peds.2016-4317
        • Juul S.E.
        • Comstock B.A.
        • Wadhawan R.
        • et al.
        A randomized trial of erythropoietin for neuroprotection in preterm infants.
        N Engl J Med. 2020; 382 ([published Online First: Epub Date]|): 233-243https://doi.org/10.1056/NEJMoa1907423
      4. https://clinicaltrials.gov/ct2/show/NCT02550054.

        • Morgan C.
        • Novak I.
        • Dale R.C.
        • Guzzetta A.
        • Badawi N.
        Single blind randomised controlled trial of GAME (Goals - Activity - Motor Enrichment) in infants at high risk of cerebral palsy.
        Res Dev Disabil. 2016; 55: 256-267
      5. Harnessing neuroplasticity to improve motor performance in infants with cerebral palsy: a pragmatic randomized controlled trial. www.anzctr.org.au;ACTRN12617000006347.

        • Boyd R.
        • Ziviani J.
        • Sakzewski L.
        • Novak I.
        • Badawi N.
        • Pannek K.
        • et al.
        REACH: study protocol of a randomised trial of rehabilitation very early in congenital hemiplegia.
        BMC Open. 2017; 7
        • Olsen J.
        • Cheong J.L.Y.
        • Eeles A.L.
        • FitzGerald T.L.
        • Cameron K.L.
        • Albesher R.A.
        • et al.
        Early general movements are associated with developmental outcomes at 4.5-5 years.
        Early Hum Dev. 2020; 148105115
        • George J.
        • Boyd R.N.
        • Colditz P.B.
        • Rose S.E.
        • Pannek K.
        • Fripp J.
        • et al.
        PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome.
        BMC Pediatr. 2015; 15: 123
        • Project A.P.I.
        Randomised trial of parental support for families with very preterm children.
        Arch Dis Child Fetal Neonatal Ed. 1998; 79: F4-F11
        • Koldewijn K.
        • Wolf M.J.
        • van Wassenaer A.
        • Meijssen D.
        • van Sonderen L.
        • van Baar A.
        • et al.
        The Infant Behavioral Assessment and Intervention Program for very low birth weight infants at 6 months corrected age.
        J Pediatr. 2009; 154 (e2): 33-38
        • Johnson S.
        • Whitelaw A.
        • Glazebrook C.
        • Israel C.
        • Turner R.
        • White I.R.
        • et al.
        Randomized trial of a parenting intervention for very preterm infants: outcome at 2 years.
        J Pediatr. 2009; 155: 488-494
        • Spittle A.
        • Morgan C.
        • Olsen J.E.
        • Novak I.
        • Cheong J.L.Y.
        Early diagnosis and treatment of cerebral palsy in children with a history of preterm birth.
        Clin Perinatol. 2018; 45: 409-420
        • Morgan C.
        • Fetters L.
        • Adde L.
        • Badawi N.
        • Bancale A.
        • Boyd R.N.
        • et al.
        Early intervention for children aged 0 to 2 years with or at high risk of cerebral palsy: international clinical practice guideline based on systematic reviews.
        JAMA Pediatr. 2021; 175: 846-858