Advertisement

Pulmonary hypertension in the newborn- etiology and pathogenesis

Published:August 07, 2022DOI:https://doi.org/10.1016/j.siny.2022.101381

      Abstract

      A disruption in the well-orchestrated fetal-to-neonatal cardiopulmonary transition at birth results in the clinical conundrum of severe hypoxemic respiratory failure associated with elevated pulmonary vascular resistance (PVR), referred to as persistent pulmonary hypertension of the newborn (PPHN). In the past three decades, the advent of surfactant, newer modalities of ventilation, inhaled nitric oxide, other pulmonary vasodilators, and finally extracorporeal membrane oxygenation (ECMO) have made giant strides in improving the outcomes of infants with PPHN. However, death or the need for ECMO occurs in 10–20% of term infants with PPHN. Better understanding of the etiopathogenesis of PPHN can lead to physiology-driven management strategies. This manuscript reviews the fetal circulation, cardiopulmonary transition at birth, etiology, and pathophysiology of PPHN.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rasanen J.
        • Wood D.C.
        • Weiner S.
        • Ludomirski A.
        • Huhta J.C.
        Role of the pulmonary circulation in the distribution of human fetal cardiac output during the second half of pregnancy.
        Circulation. 1996; 94: 1068-1073
        • Rasanen J.
        • Wood D.C.
        • Debbs R.H.
        • Cohen J.
        • Weiner S.
        • Huhta J.C.
        Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: a randomized study.
        Circulation. 1998; 97: 257-262
        • Aikio O.
        • Metsola J.
        • Vuolteenaho R.
        • Perhomaa M.
        • Hallman M.
        Transient defect in nitric oxide generation after rupture of fetal membranes and responsiveness to inhaled nitric oxide in very preterm infants with hypoxic respiratory failure.
        J Pediatr. 2012; 161: 397-403.e1
        • Chow S.
        • Le Marsney R.
        • Hossain S.
        • Haslam R.
        • Liu K.
        Report of the Australian and New Zealand neonatal network.
        ANZNN, Sydney2011
        • Rudolph A.M.
        Aortopulmonary transposition in the fetus: speculation on pathophysiology and therapy.
        Pediatr Res. 2007; 61: 375-380
        • Lakshminrusimha S.
        • Steinhorn R.H.
        155 - pathophysiology of persistent pulmonary hypertension of the newborn.
        in: Polin R.A. Abman S.H. Rowitch D.H. Benitz W.E. Fox W.W. Fetal and neonatal physiology. fifth ed. Elsevier, 2017: 1576-1588.e4
        • Smolich J.J.
        • Kenna K.R.
        Divergent effects of initial ventilation with delayed cord clamping on systemic and pulmonary arterial flows in the birth transition of preterm lambs.
        J Physiol. 2022; 600 (Epub 2022 May 10. PMID: 35482416. In press): 3585-3601https://doi.org/10.1113/JP282934
        • Bhatt S.
        • Alison B.J.
        • Wallace E.M.
        • Crossley K.J.
        • Gill A.W.
        • Kluckow M.
        • et al.
        Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs.
        J Physiol. 2013; 591: 2113-2126
        • Chambers C.D.
        • Hernandez-Diaz S.
        • Van Marter L.J.
        • Werler M.M.
        • Louik C.
        • Jones K.L.
        • et al.
        Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn.
        N Engl J Med. 2006; 354: 579-587
        • Frostell C.
        • Fratacci M.D.
        • Wain J.C.
        • Jones R.
        • Zapol W.M.
        Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction.
        Circulation. 1991; 83: 2038-2047
        • Abman S.H.
        • Chatfield B.A.
        • Hall S.
        • McMurtry I.
        Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth.
        Am J Physiol Heart Circ Physiol. 1990; 259: H1921-H1927
        • Pierce C.M.
        • Krywawych S.
        • Petros A.J.
        Asymmetric dimethyl arginine and symmetric dimethyl arginine levels in infants with persistent pulmonary hypertension of the newborn.
        Pediatr Crit Care Med. 2004; 5: 517-520
        • Pearson D.L.
        • Dawling S.
        • Walsh W.F.
        • Haines J.L.
        • Christman B.W.
        • Bazyk A.
        • et al.
        Neonatal pulmonary hypertension: urea-cycle intermediates, nitric oxide production, and carbamoyl-phosphate synthetase function.
        N Engl J Med. 2001; 344: 1832-1838
        • Gien J.
        • Tseng N.
        • Seedorf G.
        • Roe G.
        • Abman S.H.
        Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep.
        Pediatr Res. 2013; 73: 252-262
        • Lakshminrusimha S.
        • Swartz D.D.
        • Gugino S.F.
        • Ma C.X.
        • Wynn K.A.
        • Ryan R.M.
        • et al.
        Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension.
        Pediatr Res. 2009; 66: 539-544
        • Black S.M.
        • Heidersbach R.S.
        • McMullan D.M.
        • Bekker J.M.
        • Johengen M.J.
        • Fineman J.R.
        Inhaled nitric oxide inhibits NOS activity in lambs: potential mechanism for rebound pulmonary hypertension.
        Am J Physiol. 1999; 277: H1849-H1856
        • Ivy D.D.
        • Kinsella J.P.
        • Abman S.H.
        Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation.
        J Clin Invest. 1994; 93: 2141-2148
        • Lakshminrusimha S.
        • Russell J.A.
        • Gugino S.F.
        • Ryan R.M.
        • Mathew B.
        • Nielsen L.C.
        • et al.
        Adjacent bronchus attenuates pulmonary arterial contractility.
        Am J Physiol Lung Cell Mol Physiol. 2006; 291: L473-L478
        • Ivy D.D.
        • Kinsella J.P.
        • Abman S.H.
        Endothelin blockade augments pulmonary vasodilation in the ovine fetus.
        J Appl Physiol. 1985; 81 (1996): 2481-2487
        • Wild L.M.
        • Nickerson P.A.
        • Morin F.C.
        Ligating the ductus arteriosus before birth remodels the pulmonary vasculature of the lamb.
        Pediatr Res. 1989; 25: 251-257
        • Steinhorn R.H.
        • Fineman J.
        • Kusic-Pajic A.
        • Cornelisse P.
        • Gehin M.
        • Nowbakht P.
        • et al.
        Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial.
        J Pediatr. 2016; 177 (6.e3): 90
        • Sugimoto K.
        • Yokokawa T.
        • Misaka T.
        • Kaneshiro T.
        • Yamada S.
        • Yoshihisa A.
        • et al.
        Endothelin-1 upregulates activin receptor-like kinase-1 expression via gi/RhoA/sp-1/rho kinase pathways in human pulmonary arterial endothelial cells.
        Front Cardiovasc Med. 2021; 8648981
        • Leffler C.W.
        • Hessler J.R.
        • Green R.S.
        The onset of breathing at birth stimulates pulmonary vascular prostacyclin synthesis.
        Pediatr Res. 1984; 18: 938-942
        • Brannon T.S.
        • North A.J.
        • Wells L.B.
        • Shaul P.W.
        Prostacyclin synthesis in ovine pulmonary artery is developmentally regulated by changes in cyclooxygenase-1 gene expression.
        J Clin Invest. 1994; 93: 2230-2235
        • Van Meurs K.P.
        • Wright L.L.
        • Ehrenkranz R.A.
        • Lemons J.A.
        • Ball M.B.
        • Poole W.K.
        • et al.
        Inhaled nitric oxide for premature infants with severe respiratory failure.
        N Engl J Med. 2005; 353: 13-22
        • Dani C.
        • Pratesi S.
        Nitric oxide for the treatment of preterm infants with respiratory distress syndrome.
        Expet Opin Pharmacother. 2013; 14: 97-103
        • Brennan L.A.
        • Steinhorn R.H.
        • Wedgwood S.
        • Mata-Greenwood E.
        • Roark E.A.
        • Russell J.A.
        • et al.
        Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase.
        Circ Res. 2003; 92: 683-691
        • Lakshminrusimha S.
        • Steinhorn R.H.
        • Wedgwood S.
        • Savorgnan F.
        • Nair J.
        • Mathew B.
        • et al.
        Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen.
        J Appl Physiol. 1985; 111 (2011): 1441-1447
        • Lakshminrusimha S.
        • Swartz D.D.
        • Gugino S.F.
        • Ma C.-X.
        • Wynn K.A.
        • Ryan R.M.
        • et al.
        Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension.
        Pediatr Res. 2009; 66: 539-544
        • Rawat M.
        • Lakshminrusimha S.
        • Vento M.
        Pulmonary hypertension and oxidative stress: where is the link?.
        Semin Fetal Neonatal Med. 2022; 101347
        • Rosenzweig E.B.
        • Abman S.H.
        • Adatia I.
        • Beghetti M.
        • Bonnet D.
        • Haworth S.
        • et al.
        Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management.
        Eur Respir J. 2019; 53
        • Suhrie K.
        • Pajor N.M.
        • Ahlfeld S.K.
        • Dawson D.B.
        • Dufendach K.R.
        • Kitzmiller J.A.
        • et al.
        Neonatal lung disease associated with TBX4 mutations.
        J Pediatr. 2019; 206: 286-292.e1
        • Abman S.H.
        • Galambos C.
        Pediatric pulmonary hypertension on the World stage: do we need separate neonatal guidelines?.
        Adv Pulm Hypertens. 2019; 18: 92-96
        • Kerstjens-Frederikse W.S.
        • Bongers E.M.
        • Roofthooft M.T.
        • Leter E.M.
        • Douwes J.M.
        • Van Dijk A.
        • et al.
        TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension.
        J Med Genet. 2013; 50: 500-506
        • Zhang W.
        • Menke D.B.
        • Jiang M.
        • Chen H.
        • Warburton D.
        • Turcatel G.
        • et al.
        Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer.
        BMC Biol. 2013; 11: 111
        • Arora R.
        • Metzger R.J.
        • Papaioannou V.E.
        Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system.
        PLoS Genet. 2012; 8e1002866
        • Naiche L.A.
        • Arora R.
        • Kania A.
        • Lewandoski M.
        • Papaioannou V.E.
        Identity and fate of Tbx4-expressing cells reveal developmental cell fate decisions in the allantois, limb, and external genitalia.
        Dev Dynam. 2011; 240: 2290-2300
        • Levy M.
        • Eyries M.
        • Szezepanski I.
        • Ladouceur M.
        • Nadaud S.
        • Bonnet D.
        • et al.
        Genetic analyses in a cohort of children with pulmonary hypertension.
        Eur Respir J. 2016; 48: 1118-1126
        • Zhu N.
        • Gonzaga-Jauregui C.
        • Welch C.L.
        • Ma L.
        • Qi H.
        • King A.K.
        • et al.
        Exome sequencing in children with pulmonary arterial hypertension demonstrates differences compared with adults.
        Circ Genom Precis Med. 2018; 11e001887
        • Galambos C.
        • Mullen M.P.
        • Shieh J.T.
        • Schwerk N.
        • Kielt M.J.
        • Ullmann N.
        • et al.
        Phenotype characterisation of TBX4 mutation and deletion carriers with neonatal and paediatric pulmonary hypertension.
        Eur Respir J. 2019; 54
        • Byers H.M.
        • Dagle J.M.
        • Klein J.M.
        • Ryckman K.K.
        • McDonald E.L.
        • Murray J.C.
        • et al.
        Variations in CRHR1 are associated with persistent pulmonary hypertension of the newborn.
        Pediatr Res. 2012; 71: 162-167
        • Garbrecht M.R.
        • Klein J.M.
        • Schmidt T.J.
        • Snyder J.M.
        Glucocorticoid metabolism in the human fetal lung: implications for lung development and the pulmonary surfactant system.
        Neonatology. 2006; 89: 109-119
        • Trittmann J.
        • Nelin L.D.
        • Zmuda E.
        • Gastier‐Foster J.M.
        • Chen B.
        • Backes C.H.
        • et al.
        Arginase I gene single‐nucleotide polymorphism is associated with decreased risk of pulmonary hypertension in bronchopulmonary dysplasia.
        Acta Paediatr. 2014; 103: e439-e443
        • Lakshminrusimha S.
        • Keszler M.
        Persistent pulmonary hypertension of the newborn.
        NeoReviews. 2015; 16: e680-e692
        • Sharma V.
        • Berkelhamer S.
        • Lakshminrusimha S.
        Persistent pulmonary hypertension of the newborn.
        Matern Health Neonatol Perinatol. 2015; 1: 14
        • Chiruvolu A.
        • Wiswell T.E.
        Appropriate management of the nonvigorous meconium-stained newborn meconium.
        NeoReviews. 2022; 23: e250-e261
        • Villanueva M.E.
        • Zaher F.M.
        • Svinarich D.M.
        • Konduri G.G.
        Decreased gene expression of endothelial nitric oxide synthase in newborns with persistent pulmonary hypertension.
        Pediatr Res. 1998; 44: 338-343
        • Sehgal A.
        • Athikarisamy S.E.
        • Adamopoulos M.
        Global myocardial function is compromised in infants with pulmonary hypertension.
        Acta Paediatr. 2012; 101: 410-413
        • Kumar V.
        • Hutchison A.
        • Lakshminrusimha S.
        • Morin F.
        • Wynn R.
        • Ryan R.
        Characteristics of pulmonary hypertension in preterm neonates.
        J Perinatol. 2007; 27: 214-219
        • Mathew R.
        Signaling pathways involved in the development of bronchopulmonary dysplasia and pulmonary hypertension.
        Children. 2020; 7: 100
        • Aker K.
        • Brantberg A.
        • Nyrnes S.A.
        Prenatal constriction of the ductus arteriosus following maternal diclofenac medication in the third trimester.
        BMJ Case Rep. 2015; 2015bcr2015210473
        • Alano M.A.
        • Ngougmna E.
        • Ostrea Jr., E.M.
        • Konduri G.G.
        Analysis of nonsteroidal antiinflammatory drugs in meconium and its relation to persistent pulmonary hypertension of the newborn.
        Pediatrics. 2001; 107: 519-523
        • Van Marter L.J.
        • Hernandez-Diaz S.
        • Werler M.M.
        • Louik C.
        • Mitchell A.A.
        Nonsteroidal antiinflammatory drugs in late pregnancy and persistent pulmonary hypertension of the newborn.
        Pediatrics. 2013; 131: 79-87
        • Chandrasekharan P.K.
        • Rawat M.
        • Madappa R.
        • Rothstein D.H.
        • Lakshminrusimha S.
        Congenital Diaphragmatic hernia – a review.
        Matern Health Neonatol Perinatol. 2017; 3: 6
        • Hedrick H.L.
        • Danzer E.
        • Merchant A.
        • Bebbington M.W.
        • Zhao H.
        • Flake A.W.
        • et al.
        Liver position and lung-to-head ratio for prediction of extracorporeal membrane oxygenation and survival in isolated left congenital diaphragmatic hernia.
        Am J Obstet Gynecol. 2007; 197 (e1-. e4): 422
        • Bisschops L.L.
        • Pop G.A.
        • Teerenstra S.
        • Struijk P.C.
        • van der Hoeven J.G.
        • Hoedemaekers C.W.
        Effects of viscosity on cerebral blood flow after cardiac arrest.
        Crit Care Med. 2014; 42: 632-637
        • Lakshminrusimha S.
        • Shankaran S.
        • Laptook A.
        • McDonald S.
        • Keszler M.
        • Van Meurs K.
        • et al.
        Pulmonary hypertension associated with hypoxic-ischemic encephalopathy-antecedent characteristics and comorbidities.
        J Pediatr. 2018; 196: 45-51 e3
        • Shankaran S.
        • Laptook A.R.
        • Ehrenkranz R.A.
        • Tyson J.E.
        • McDonald S.A.
        • Donovan E.F.
        • et al.
        Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy.
        N Engl J Med. 2005; 353: 1574-1584
        • Shankaran S.
        • Laptook A.R.
        • Pappas A.
        • McDonald S.A.
        • Das A.
        • Tyson J.E.
        • et al.
        Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial.
        JAMA, J Am Med Assoc. 2014; 312: 2629-2639
        • Abman S.H.
        • Hansmann G.
        • Archer S.L.
        • Ivy D.D.
        • Adatia I.
        • Chung W.K.
        • et al.
        Pediatric pulmonary hypertension: guidelines from the American heart association and American thoracic society.
        Circulation. 2015; 132 (Epub 2015 Nov 3. Erratum in: Circulation. 2016 Jan 26;133(4):e368. PMID: 26534956): 2037-2099https://doi.org/10.1161/CIR.0000000000000329
        • Hansmann G.
        • Koestenberger M.
        • Alastalo T.P.
        • Apitz C.
        • Austin E.D.
        • Bonnet D.
        • et al.
        Updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: the European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.
        J Heart Lung Transplant : Off Publ Int Soc Heart Transplant. 2019; 38 (2019): 879-901
        • Yazdani A.
        • Howidi B.
        • Shi M.Z.
        • Tugarinov N.
        • Khoja Z.
        • Wintermark P.
        Sildenafil improves hippocampal brain injuries and restores neuronal development after neonatal hypoxia-ischemia in male rat pups.
        Sci Rep. 2021; 1122046
        • Terpolilli N.A.
        • Kim S.W.
        • Thal S.C.
        • Kataoka H.
        • Zeisig V.
        • Nitzsche B.
        • et al.
        Inhalation of nitric oxide prevents ischemic brain damage in experimental stroke by selective dilatation of collateral arterioles.
        Circ Res. 2012; 110: 727-738
        • Rios D.R.
        • Lapointe A.
        • Schmolzer G.M.
        • Mohammad K.
        • VanMeurs K.P.
        • Keller R.L.
        • et al.
        Hemodynamic optimization for neonates with neonatal encephalopathy caused by a hypoxic ischemic event: physiological and therapeutic considerations.
        Semin Fetal Neonatal Med. 2021; 101277
        • Afzal B.
        • Chandrasekharan P.
        • Tancredi D.J.
        • Russell J.
        • Steinhorn R.H.
        • Lakshminrusimha S.
        Monitoring gas exchange during hypothermia for hypoxic-ischemic encephalopathy. Pediatric critical care medicine.
        J Soc Crit Care Med World Federation Pediatr Intensive Crit Care Soc. 2019; 20: 166-171
        • Konduri G.G.
        • Solimano A.
        • Sokol G.M.
        • Singer J.
        • Ehrenkranz R.A.
        • Singhal N.
        • et al.
        A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure.
        Pediatrics. 2004; 113: 559-564
        • Chandrasekharan P.
        • Lakshminrusimha S.
        • Abman S.H.
        When to say no to inhaled nitric oxide in neonates?.
        Semin Fetal Neonatal Med. 2021; 101200
        • Lapointe A.
        • Barrington K.J.
        Pulmonary hypertension and the asphyxiated newborn.
        J Pediatr. 2011; 158: e19-24
        • Bishop N.B.
        • Stankiewicz P.
        • Steinhorn R.H.
        Alveolar capillary dysplasia.
        Am J Respir Crit Care Med. 2011; 184: 172-179
        • Stankiewicz P.
        • Sen P.
        • Bhatt S.S.
        • Storer M.
        • Xia Z.
        • Bejjani B.A.
        • et al.
        Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations.
        Am J Hum Genet. 2009; 84: 780-791
        • Kalinichenko V.V.
        • Lim L.
        • Stolz D.B.
        • Shin B.
        • Rausa F.M.
        • Clark J.
        • et al.
        Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor.
        Dev Biol. 2001; 235: 489-506
        • Jourdan-Voyen L.
        • Touraine R.
        • Masutti J.P.
        • Busa T.
        • Vincent-Delorme C.
        • Dreyfus L.
        • et al.
        Phenotypic and genetic spectrum of alveolar capillary dysplasia: a retrospective cohort study.
        Arch Dis Child Fetal Neonatal Ed. 2020; 105: 387-392