Advertisement

Long term outcome of babies with pulmonary hypertension

Published:August 11, 2022DOI:https://doi.org/10.1016/j.siny.2022.101384

      Abstract

      Neonatal pulmonary hypertension (PH) is associated with many severe congenital abnormalities (congenital diaphragmatic hernia) or acquired cardiorespiratory diseases such as pneumonia, meconium aspiration and bronchopulmonary dysplasia (BPD). If no cause is found it may be labelled idiopathic persistent pulmonary hypertension of the newborn. Although PH may result in life threatening hypoxia and circulatory failure, in the majority of cases, it resolves in the neonatal period following treatment of the underlying cause. However, in some cases, neonatal PH progresses into infancy and childhood where symptoms include failure to thrive and eventually right heart failure or death if left untreated. This chronic condition is termed pulmonary vascular hypertensive disease (PHVD). Although classification and diagnostic criteria have only recently been proposed for pediatric PHVD, little is known about the pathophysiology of chronic neonatal PH, or why pulmonary vascular resistance may remain elevated well beyond infancy. This review explores the many factors involved in chronic PH and what implications this may have on long term outcome when the disease progresses beyond the neonatal period.

      Keywords

      Abbreviations:

      PH (Pulmonary Hypertension), PHVD (Pulmonary hypertensive vascular disease), PVR (Pulmonary vascular resistance), CDH (Congenital diaphragmatic hernia), CHD (Congenital heart disease)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Steinhorn R.H.
        Neonatal pulmonary hypertension.
        Pediatr Crit Care Med. 2010; 11: S79-S84https://doi.org/10.1097/pcc.0b013e3181c76cdc
        • Mohseni-Bod H.
        • Bohn D.
        Pulmonary hypertension in congenital diaphragmatic hernia.
        Semin Pediatr Surg. 2007; 16: 126-133https://doi.org/10.1053/j.sempedsurg.2007.01.008
        • Mazloum D.E.
        • Moschino L.
        • Bozzetto S.
        • et al.
        Chronic lung disease of prematurity: long-term respiratory outcome.
        Neonatology. 2014; 105: 352-356https://doi.org/10.1159/0003606514
        • Al-Ghanem G.
        • Shah P.
        • Thomas S.
        • et al.
        Bronchopulmonary dysplasia and pulmonary hypertension: a meta-analysis.
        J Perinatol. 2017; 37: 414-419https://doi.org/10.1038/jp.2016.250
        • Berkel S van
        • Binkhorst M.
        • Afj van Heijst
        • et al.
        Adapted ECMO criteria for newborns with persistent pulmonary hypertension after inhaled nitric oxide and/or high-frequency oscillatory ventilation.
        Intensive Care Med. 2013; 39: 1113-1120https://doi.org/10.1007/s00134-013-2907-y
        • Fike C.D.
        • Aschner J.L.
        Looking beyond PPHN: the unmet challenge of chronic progressive pulmonary hypertension in the newborn.
        Pulm Circ. 2013; 3: 454-466https://doi.org/10.1086/674438
        • Arjaans S.
        • Zwart E.A.H.
        • Ploegstra M.
        • et al.
        Identification of gaps in the current knowledge on pulmonary hypertension in extremely preterm infants: a systematic review and meta-analysis.
        Paediatr Perinat Epidemiol. 2018; 32: 258-267https://doi.org/10.1111/ppe.12444
        • Maron B.A.
        • Abman S.H.
        Translational advances in the field of pulmonary hypertension. Focusing on developmental origins and disease inception for the prevention of pulmonary hypertension.
        Am J Resp Crit Care. 2017; 195: 292-301https://doi.org/10.1164/rccm.201604-0882pp
        • Williams E.E.
        • Lee R.
        • Williams N.
        • et al.
        The impact of transfers from neonatal intensive care to paediatric intensive care.
        J Perinat Med. 2021; 49: 630-631https://doi.org/10.1515/jpm-2021-0022
        • Hansmann G.
        Pulmonary hypertension in infants, children, and young adults.
        J Am Coll Cardiol. 2017; 69: 2551-2569https://doi.org/10.1016/j.jacc.2017.03.575
        • Cerro MJ del
        • Abman S.
        • Diaz G.
        • et al.
        A consensus approach to the classification of pediatric pulmonary hypertensive vascular disease: report from the PVRI Pediatric Taskforce, Panama 2011.
        Pulm Circ. 2011; 1: 286-298https://doi.org/10.4103/2045-8932.83456
        • Malavolti A.M.
        • Bassler D.
        • Arlettaz-Mieth R.
        • et al.
        Bronchopulmonary dysplasia—impact of severity and timing of diagnosis on neurodevelopment of preterm infants: a retrospective cohort study.
        Bmj Paediatr Open. 2018; 2e000165https://doi.org/10.1136/bmjpo-2017-000165
        • Beligere N.
        • Rao R.
        Neurodevelopmental outcome of infants with meconium aspiration syndrome: report of a study and literature review.
        J Perinatol. 2008; 28: S93-S101https://doi.org/10.1038/jp.2008.154
        • Choi E.K.
        • Shin S.H.
        • Kim E.-K.
        • et al.
        Developmental outcomes of preterm infants with bronchopulmonary dysplasia-associated pulmonary hypertension at 18–24 months of corrected age.
        BMC Pediatr. 2019; 19: 26https://doi.org/10.1186/s12887-019-1400-3
        • Heneghan J.A.
        • Pollack M.M.
        Morbidity changing the outcome paradigm for pediatric critical care.
        Pediatr Clin. 2017; 64: 1147-1165https://doi.org/10.1016/j.pcl.2017.06.011
        • Yock P.G.
        • Popp R.L.
        Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation.
        Circulation. 2018; 70: 657-662https://doi.org/10.1161/01.cir.70.4.657
        • Keller R.L.
        • Tacy T.A.
        • Hendricks-Munoz K.
        • et al.
        Congenital diaphragmatic hernia.
        Am J Resp Crit Care. 2010; 182: 555-561https://doi.org/10.1164/rccm.200907-1126oc
        • Tissot C.
        • Muehlethaler V.
        • Sekarski N.
        Basics of functional echocardiography in children and neonates.
        Front Pediatr. 2017; 5: 235https://doi.org/10.3389/fped.2017.00235
        • Tissot C.
        • Singh Y.
        Neonatal functional echocardiography.
        Curr Opin Pediatr. 2020; 32: 235-244https://doi.org/10.1097/mop.0000000000000887
        • Boode WP de
        • Lee R.
        • van der
        • Eriksen B.H.
        • et al.
        The role of Neonatologist Performed Echocardiography in the assessment and management of neonatal shock.
        Pediatr Res. 2018; 84: 57-67https://doi.org/10.1038/s41390-018-0081-1
        • Arya B.
        • Kerstein D.
        • Leu C.-S.
        • et al.
        Echocardiographic assessment of right atrial pressure in a pediatric and young adult population.
        Pediatr Cardiol. 2016; 37: 558-567https://doi.org/10.1007/s00246-015-1315-1
        • Patel S.G.
        • Woolman P.
        • Li L.
        • et al.
        Relation of right atrial volume, systemic venous dimensions, and flow patterns to right atrial pressure in infants and children.
        Am J Cardiol. 2017; 119: 1473-1478https://doi.org/10.1016/j.amjcard.2017.01.013
        • Dambrauskaite V.
        • Delcroix M.
        • Claus P.
        • et al.
        Regional right ventricular dysfunction in chronic pulmonary hypertension.
        J Am Soc Echocardiogr. 2007; 20: 1172-1180https://doi.org/10.1016/j.echo.2007.02.005
        • Sachdev A.
        • Villarraga H.R.
        • Frantz R.P.
        • et al.
        Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension.
        Chest. 2011; 139: 1299-1309https://doi.org/10.1378/chest.10-2015
        • Broderick-Forsgren K.
        • Davenport C.A.
        • Sivak J.A.
        • et al.
        Improving on the diagnostic characteristics of echocardiography for pulmonary hypertension.
        Int J Cardiovasc Imag. 2017; 33: 1341-1349https://doi.org/10.1007/s10554-017-1114-2
        • Hansmann G.
        • Koestenberger M.
        • Alastalo T.-P.
        • et al.
        2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension. The European pediatric pulmonary vascular disease network (EPPVDN), endorsed by AEPC, ESPR and ISHLT.
        J Heart Lung Transplant. 2019; 38: 879-901https://doi.org/10.1016/j.healun.2019.06.022
        • Assad T.R.
        • Maron B.A.
        • Robbins I.M.
        • et al.
        Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension.
        Jama Cardiol. 2017; 2: 1361https://doi.org/10.1001/jamacardio.2017.3882
        • Barst R.J.
        • McGoon M.D.
        • Elliott C.G.
        • et al.
        Survival in childhood pulmonary arterial hypertension.
        Circulation. 2012; 125: 113-122https://doi.org/10.1161/circulationaha.111.026591
        • Migdał A.
        • Żuk M.
        • Jagiełłowicz-Kowalska D.
        • et al.
        Which functional classification scale is optimal for children with pulmonary hypertension (PAH)?.
        Pediatr Cardiol. 2020; 41: 1725-1729https://doi.org/10.1007/s00246-020-02434-8
        • Adatia I.
        • Haworth S.G.
        • Wegner M.
        • et al.
        Clinical trials in neonates and children: report of the pulmonary hypertension academic research consortium pediatric advisory committee.
        Pulm Circ. 2013; 3: 252-266https://doi.org/10.4103/2045-8932.1
        • Zijlstra W.M.H.
        • Douwes J.M.
        • Rosenzweig E.B.
        • et al.
        Survival differences in pediatric pulmonary arterial hypertension clues to a better understanding of outcome and optimal treatment strategies.
        J Am Coll Cardiol. 2014; 63: 2159-2169https://doi.org/10.1016/j.jacc.2014.02.575
        • Cerro MJ del
        • Rotés A.S.
        • Cartón A.
        • et al.
        Pulmonary hypertension in bronchopulmonary dysplasia: clinical findings, cardiovascular anomalies and outcomes.
        Pediatr Pulmonol. 2014; 49: 49-59https://doi.org/10.1002/ppul.22797
        • Bhat R.
        • Salas A.A.
        • Foster C.
        • et al.
        Prospective analysis of pulmonary hypertension in extremely low birth weight infants.
        Pediatrics. 2012; 129: e682-e689https://doi.org/10.1542/peds.2011-1827
        • Thomas L.
        • Baczynski M.
        • Deshpande P.
        • et al.
        Multicentre prospective observational study exploring the predictive value of functional echocardiographic indices for early identification of preterm neonates at risk of developing chronic pulmonary hypertension secondary to chronic neonatal lung disease.
        BMJ Open. 2021; 11e044924https://doi.org/10.1136/bmjopen-2020-044924
        • Group UCE
        The collaborative UK ECMO trial: follow-up to 1 Year of age.
        Pediatrics. 1998; 101e1–e1https://doi.org/10.1542/peds.101.4.e1
        • McNally H.
        • Bennett C.C.
        • Elbourne D.
        • et al.
        United Kingdom collaborative randomized trial of neonatal extracorporeal membrane oxygenation: follow-up to age 7 years.
        Pediatrics. 2006; 117: e845-e854https://doi.org/10.1542/peds.2005-1167
        • Bennett C.C.
        • Johnson A.
        • Field D.J.
        • et al.
        UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation: follow-up to age 4 years.
        Lancet. 2001; 357: 1094-1096https://doi.org/10.1016/s0140-6736(00)04310-5
        • Burden R.J.
        • Shann F.
        • Butt W.
        • et al.
        Tracheobronchial malacia and stenosis in children in intensive care: bronchograms help to predict outcome.
        Thorax. 1999; 54: 511https://doi.org/10.1136/thx.54.6.511
        • Short B.L.
        Extracorporeal membrane oxygenation: use in meconium aspiration syndrome.
        J Perinatol. 2008; 28: S79-S83https://doi.org/10.1038/jp.2008.152
        • Wallis C.
        • Alexopoulou E.
        • Antón-Pacheco J.L.
        • et al.
        ERS statement on tracheomalacia and bronchomalacia in children.
        Eur Respir J. 2019; 54: 1900382https://doi.org/10.1183/13993003.00382-2019
        • Mok Q.
        • Negus S.
        • McLaren C.A.
        • et al.
        Computed tomography versus bronchography in the diagnosis and management of tracheobronchomalacia in ventilator dependent infants.
        Arch Dis Child Fetal Neonatal Ed. 2005; 90F290https://doi.org/10.1136/adc.2004.062604
        • Griffiths B.T.
        • James P.
        • Morgan G.
        • et al.
        Biodegradable stents for the relief of vascular bronchial compression in children with left atrial enlargement.
        J Bronchol Intervent Pulmonol. 2020; 27: 200-204https://doi.org/10.1097/lbr.0000000000000654
        • Wang C.S.
        • Kou Y.
        • Shah G.B.
        • et al.
        Tracheostomy in extremely preterm neonates in the United States: a cross-sectional analysis.
        Laryngoscope. 2020; 130: 2056-2062https://doi.org/10.1002/lary.28304
        • Baroudi S.A.
        • Collaco J.M.
        • Lally P.A.
        • et al.
        Clinical features and outcomes associated with tracheostomy in congenital diaphragmatic hernia.
        Pediatr Pulmonol. 2020; 55: 90-101https://doi.org/10.1002/ppul.24516
        • Higano N.S.
        • Bates A.J.
        • Gunatilaka C.C.
        • et al.
        Bronchopulmonary dysplasia from chest radiographs to magnetic resonance imaging and computed tomography: adding value.
        Pediatr Radiol. 2022; 52: 643-660https://doi.org/10.1007/s00247-021-05250-1
        • Higano N.S.
        • Ruoss J.L.
        • Woods J.C.
        Modern pulmonary imaging of bronchopulmonary dysplasia.
        J Perinatol. 2021; 41: 707-717https://doi.org/10.1038/s41372-021-00929-7
        • Ascha M.
        • Renapurkar R.D.
        • Tonelli A.R.
        A review of imaging modalities in pulmonary hypertension.
        Ann Thorac Med. 2017; 12: 61-73https://doi.org/10.4103/1817-1737.203742
        • D'Alto M.
        • Mahadevan V.S.
        Pulmonary arterial hypertension associated with congenital heart disease.
        Eur Respir Rev. 2012; 21: 328-337https://doi.org/10.1183/09059180.00004712
        • Clyman R.I.
        • Hills N.K.
        • Cambonie G.
        • et al.
        Patent ductus arteriosus, tracheal ventilation, and the risk of bronchopulmonary dysplasia.
        Pediatr Res. 2022; 91: 652-658https://doi.org/10.1038/s41390-021-01475-w
        • Ael van Nisselrooij
        • Lugthart M.A.
        • Clur S.-A.
        • et al.
        The prevalence of genetic diagnoses in fetuses with severe congenital heart defects.
        Genet Med. 2020; 22: 1206-1214https://doi.org/10.1038/s41436-020-0791-8
        • Dykes J.C.
        • Al-mousily M.F.
        • Abuchaibe E.-C.
        • et al.
        The incidence of chromosome abnormalities in neonates with structural heart disease.
        Heart. 2016; 102: 634https://doi.org/10.1136/heartjnl-2015-308650
        • Walsh-Sukys M.C.
        • Tyson J.E.
        • Wright L.L.
        • et al.
        Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes.
        Pediatrics. 2000; 105: 14-20https://doi.org/10.1542/peds.105.1.14
        • Barrington K.J.
        • Finer N.
        • Pennaforte T.
        • et al.
        Nitric oxide for respiratory failure in infants born at or near term.
        Cochrane Db Syst Rev. 2017; 2017CD000399https://doi.org/10.1002/14651858.cd000399.pub3
        • Stocker C.
        • Penny D.J.
        • Brizard C.P.
        • et al.
        Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery.
        Intensive Care Med. 2003; 29: 1996-2003https://doi.org/10.1007/s00134-003-2016-4
        • Konduri G.G.
        • Kim U.O.
        Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn.
        Pediatr Clin. 2009; 56: 579-600https://doi.org/10.1016/j.pcl.2009.04.004
        • Naples R.
        • Ramaiah S.
        • Rankin J.
        • et al.
        Life-threatening bronchopulmonary dysplasia: a British paediatric surveillance unit study.
        Arch Dis Child Fetal Neonatal Ed. 2022; 107: 13-19https://doi.org/10.1136/archdischild-2021-322001
        • Arjaans S.
        • Haarman M.G.
        • Roofthooft M.T.R.
        • et al.
        Fate of pulmonary hypertension associated with bronchopulmonary dysplasia beyond 36 weeks postmenstrual age.
        Arch Dis Child Fetal Neonatal Ed. 2021; 106: 45-50https://doi.org/10.1136/archdischild-2019-318531
        • Lagatta J.M.
        • Hysinger E.B.
        • Zaniletti I.
        • et al.
        The impact of pulmonary hypertension in preterm infants with severe bronchopulmonary dysplasia through 1 year.
        J Pediatr. 2018; 203 (e3): 218-224https://doi.org/10.1016/j.jpeds.2018.07.035
        • Goss K.N.
        • Beshish A.G.
        • Barton G.P.
        • et al.
        Early pulmonary vascular disease in young adults born preterm.
        Am J Resp Crit Care. 2018; 198: 1549-1558https://doi.org/10.1164/rccm.201710-2016oc
        • Mulchrone A.
        • Bellofiore A.
        • Douwes J.M.
        • et al.
        Impaired right ventricular–vascular coupling in young adults born preterm.
        Am J Resp Crit Care. 2020; 201: 615-618https://doi.org/10.1164/rccm.201904-0767le
        • Yu P.T.
        • Jen H.C.
        • Rice-Townsend S.
        • et al.
        The role of ECMO in the management of congenital diaphragmatic hernia.
        Semin Perinatol. 2020; 44: 151166https://doi.org/10.1053/j.semperi.2019.07.005
        • Lally P.A.
        • Skarsgard E.D.
        Congenital diaphragmatic hernia: the role of multi-institutional collaboration and patient registries in supporting best practice.
        Semin Pediatr Surg. 2017; 26: 129-135https://doi.org/10.1053/j.sempedsurg.2017.04.004
        • Lewis L.
        • Sinha I.
        • Kang S.-L.
        • et al.
        Long term outcomes in CDH: cardiopulmonary outcomes and health related quality of life.
        J Pediatr Surg Publ Online First. 2022; https://doi.org/10.1016/j.jpedsurg.2022.03.020
        • Morini F.
        • Valfrè L.
        • Bagolan P.
        Long-term morbidity of congenital diaphragmatic hernia: a plea for standardization.
        Semin Pediatr Surg. 2017; 26: 301-310https://doi.org/10.1053/j.sempedsurg.2017.09.002
        • Lin A.E.
        • Pober B.R.
        • Adatia I.
        Congenital diaphragmatic hernia and associated cardiovascular malformations: type, frequency, and impact on management.
        Am J Med Genet Part C Seminars Medical Genetics. 2007; 145C: 201-216https://doi.org/10.1002/ajmg.c.30131
        • Falconer A.R.
        • Brown R.A.
        • Helms P.
        • et al.
        Pulmonary sequelae in survivors of congenital diaphragmatic hernia.
        Thorax. 1990; 45: 126https://doi.org/10.1136/thx.45.2.126
        • Meurs K.P.V.
        • Robbins S.T.
        • Reed V.L.
        • et al.
        Congenital diaphragmatic hernia: long-term outcome in neonates treated with extracorporeal membrane oxygenation.
        J Pediatr. 1993; 122: 893-899https://doi.org/10.1016/s0022-3476(09)90013-0
        • Zivanovic S.
        • Pushparajah K.
        • Calvert S.
        • et al.
        Pulmonary artery pressures in school-age children born prematurely.
        J Pediatr. 2017; 191 (e3): 42-49https://doi.org/10.1016/j.jpeds.2017.08.034
        • Kim G.H.
        • Ryan J.J.
        • Marsboom G.
        • et al.
        Epigenetic mechanisms of pulmonary hypertension.
        Pulm Circ. 2011; 1: 347-356https://doi.org/10.4103/2045-8932.87300
        • Xu X.-F.
        • Cheng F.
        • Du L.-Z.
        Epigenetic regulation of pulmonary arterial hypertension.
        Hypertens Res. 2011; 34: 981-986https://doi.org/10.1038/hr.2011.79
        • Wang X.
        • Cho H.-Y.
        • Campbell M.R.
        • et al.
        Epigenome-wide association study of bronchopulmonary dysplasia in preterm infants: results from the discovery-BPD program.
        Clin Epigenet. 2022; 14: 57https://doi.org/10.1186/s13148-022-01272-0