Advertisement

Targeted fortification with human milk analysis: An opportunity for innovation

Published:September 12, 2022DOI:https://doi.org/10.1016/j.siny.2022.101392

      Abstract

      Human milk's variable macronutrient composition is a necessary consideration when caring for very low birthweight infants. Targeted fortification is the practice of fortifying human milk using its known composition from human milk analysis, rather than its assumed macronutrient values. Utilization of human milk analyzers to measure the protein, fat, lactose, and energy composition within human milk samples has allowed the translation of this practice into the clinical setting. This review discusses the rationale of why targeted fortification is an important practice, what barriers exist in its implementation in the clinical setting, and what research gaps remain to be addressed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pandolfi E.
        • Gesualdo F.
        • Rizzo C.
        • et al.
        Breastfeeding and respiratory infections in the first 6 Months of life: a case control study.
        Front Pediatr. 2019; 7 ([published Online First: Epub Date]|): 152https://doi.org/10.3389/fped.2019.00152
        • Pannaraj P.S.
        • Li F.
        • Cerini C.
        • et al.
        Association between breast milk bacterial communities and establishment and development of the infant gut microbiome.
        JAMA Pediatr. 2017; 171 ([published Online First: Epub Date]|): 647-654https://doi.org/10.1001/jamapediatrics.2017.0378
        • Sabirov A.
        • Casey J.R.
        • Murphy T.F.
        • Pichichero M.E.
        Breast-feeding is associated with a reduced frequency of acute otitis media and high serum antibody levels against NTHi and outer membrane protein vaccine antigen candidate P6.
        Pediatr Res. 2009; 66 ([published Online First: Epub Date]|): 565-570https://doi.org/10.1203/PDR.0b013e3181b4f8a6
        • Tromp I.
        • Kiefte-de Jong J.
        • Raat H.
        • et al.
        Breastfeeding and the risk of respiratory tract infections after infancy: the Generation R Study.
        PLoS One. 2017; 12 ([published Online First: Epub Date]|)e0172763https://doi.org/10.1371/journal.pone.0172763
        • Lactoengineering Groh-Wargo S.
        Steele C. Collins E. Infant and pediatric feedings. 3 ed. Academy of Nutrition and Dietetics, Chicago, IL2019: 113-128
        • Lawrence R.A.
        Appendix A: composition of human milk.
        in: Lawrence R.A. Lawrence R.M. Breastfeeding: a Guide for the medical profession. ninth ed. ed. Elsevier, 2021: 729-730
        • Arslanoglu S.
        • Boquien C.Y.
        • King C.
        • et al.
        Fortification of human milk for preterm infants: update and recommendations of the European milk bank association (EMBA) working group on human milk fortification.
        Front Pediatr. 2019; 7 ([published Online First: Epub Date]|): 76https://doi.org/10.3389/fped.2019.00076
        • Arslanoglu S.
        • Moro G.E.
        • Ziegler E.E.
        Adjustable fortification of human milk fed to preterm infants: does it make a difference?.
        J Perinatol. 2006; 26 ([published Online First: Epub Date]|): 614-621https://doi.org/10.1038/sj.jp.7211571
        • Ergenekon E.
        • Soysal Ş.
        • Hirfanoğlu İ.
        • et al.
        Short- and long-term effects of individualized enteral protein supplementation in preterm newborns.
        Turk J Pediatr. 2013; 55: 365-370
        • Alan S.
        • Atasay B.
        • Cakir U.
        • et al.
        An intention to achieve better postnatal in-hospital-growth for preterm infants: adjustable protein fortification of human milk.
        Early Hum Dev. 2013; 89 ([published Online First: Epub Date]|): 1017-1023https://doi.org/10.1016/j.earlhumdev.2013.08.015
        • Arslanoglu S.
        • Bertino E.
        • Coscia A.
        • Tonetto P.
        • Giuliani F.
        • Moro G.E.
        Update of adjustable fortification regimen for preterm infants: a new protocol.
        J Biol Regul Homeost Agents. 2012; 26: 65-67
        • Medicine Io
        Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids.
        The National Academies Press, Washington, DC2005
      1. Koletzko B. Poindexter B.B. Uauy R. Nutritrional care of preterm infants: scientific Basis and practical Guidelines. S. Karger AG, Basel, Switzerland2014
        • Abrams S.A.
        In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D.
        Am J Clin Nutr. 2007; 85 (604s-07s [published Online First: Epub Date]|)https://doi.org/10.1093/ajcn/85.2.604S
        • Fenton T.R.
        • Nasser R.
        • Eliasziw M.
        • Kim J.H.
        • Bilan D.
        • Sauve R.
        Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant.
        BMC Pediatr. 2013; 13 ([published Online First: Epub Date]|): 92https://doi.org/10.1186/1471-2431-13-92
        • Burge K.
        • Vieira F.
        • Eckert J.
        • Chaaban H.
        Lipid composition, digestion, and absorption differences among neonatal feeding strategies: potential implications for intestinal inflammation in preterm infants.
        Nutrients. 2021; 13 ([published Online First: Epub Date]|)https://doi.org/10.3390/nu13020550
      2. Breastfeeding and the use of human milk.
        Pediatrics. 2012; 129 ([published Online First: Epub Date]|): e827-e841https://doi.org/10.1542/peds.2011-3552
        • Samuel T.M.
        • Zhou Q.
        • Giuffrida F.
        • Munblit D.
        • Verhasselt V.
        • Thakkar S.K.
        Nutritional and non-nutritional composition of human milk is modulated by maternal, infant, and methodological factors.
        Front Nutr. 2020; 7 ([published Online First: Epub Date]|)https://doi.org/10.3389/fnut.2020.576133
        • Stellwagen L.M.
        • Vaucher Y.E.
        • Chan C.S.
        • Montminy T.D.
        • Kim J.H.
        Pooling expressed breastmilk to provide a consistent feeding composition for premature infants.
        Breastfeed Med. 2013; 8 ([published Online First: Epub Date]|): 205-209https://doi.org/10.1089/bfm.2012.0007
        • Groh-Wargo S.
        • Valentic J.
        • Khaira S.
        • Super D.M.
        • Collin M.
        Considering human milk variability in the nutritional management of low-birth-weight infants.
        I Can: Infant, Child, & Adolescent Nutrition. 2014; 6 ([published Online First: Epub Date]|): 301-302https://doi.org/10.1177/1941406414536611
        • Arnold M.
        • Adamkin D.
        • Radmacher P.
        Improving fortification with weekly analysis of human milk for VLBW infants.
        J Perinatol. 2017; 37 ([published Online First: Epub Date]|): 194-196https://doi.org/10.1038/jp.2016.170
      3. Donor human milk for the high-risk infant: preparation, safety, and usage options in the United States.
        Pediatrics. 2017; 139 ([published Online First: Epub Date]|)https://doi.org/10.1542/peds.2016-3440
        • Meredith-Dennis L.
        • Xu G.
        • Goonatilleke E.
        • Lebrilla C.B.
        • Underwood M.A.
        • Smilowitz J.T.
        Composition and variation of macronutrients, immune proteins, and human milk oligosaccharides in human milk from nonprofit and commercial milk banks.
        J Hum Lactation. 2018; 34 ([published Online First: Epub Date]|): 120-129https://doi.org/10.1177/0890334417710635
        • Senterre T.
        • Rigo J.
        Reduction in postnatal cumulative nutritional deficit and improvement of growth in extremely preterm infants.
        Acta Paediatr. 2012; 101 ([published Online First: Epub Date]|): e64-e70https://doi.org/10.1111/j.1651-2227.2011.02443.x
        • Salas A.A.
        • Jerome M.
        • Finck A.
        • Razzaghy J.
        • Chandler-Laney P.
        • Carlo W.A.
        Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial.
        Pediatr Res. 2021; ([published Online First: Epub Date]|): 1-7https://doi.org/10.1038/s41390-021-01628-x
        • Fenton T.R.
        • Griffin I.J.
        • Groh-Wargo S.
        • et al.
        Very low birthweight preterm infants: a 2020 evidence analysis center evidence-based nutrition practice guideline.
        J Acad Nutr Diet. 2021; ([published Online First: Epub Date]|)https://doi.org/10.1016/j.jand.2021.02.027
        • Ramel S.E.
        • Demerath E.W.
        • Gray H.L.
        • Younge N.
        • Boys C.
        • Georgieff M.K.
        The relationship of poor linear growth velocity with neonatal illness and two-year neurodevelopment in preterm infants.
        Neonatology. 2012; 102 ([published Online First: Epub Date]|): 19-24https://doi.org/10.1159/000336127
        • Pfister K.M.
        • Gray H.L.
        • Miller N.C.
        • Demerath E.W.
        • Georgieff M.K.
        • Ramel S.E.
        Exploratory study of the relationship of fat-free mass to speed of brain processing in preterm infants.
        Pediatr Res. 2013; 74 ([published Online First: Epub Date]|): 576-583https://doi.org/10.1038/pr.2013.138
        • Ramel S.E.
        • Gray H.L.
        • Christiansen E.
        • Boys C.
        • Georgieff M.K.
        • Demerath E.W.
        Greater early gains in fat-free mass, but not fat mass, are associated with improved neurodevelopment at 1 Year corrected age for prematurity in very low birth weight preterm infants.
        J Pediatr. 2016; 173 ([published Online First: Epub Date]|): 108-115https://doi.org/10.1016/j.jpeds.2016.03.003
        • Cooper D.M.
        • Girolami G.L.
        • Kepes B.
        • et al.
        Body composition and neuromotor development in the year after NICU discharge in premature infants.
        Pediatr Res. 2020; ([published Online First: Epub Date]|)https://doi.org/10.1038/s41390-020-0756-2
        • Scheurer J.M.
        • Zhang L.
        • Plummer E.A.
        • Hultgren S.A.
        • Demerath E.W.
        • Ramel S.E.
        Body composition changes from infancy to 4 Years and associations with early childhood cognition in preterm and full-term children.
        Neonatology. 2018; 114 ([published Online First: Epub Date]|): 169-176https://doi.org/10.1159/000487915
        • Ramey S.R.
        • Merlino Barr S.
        • Moore K.A.
        • Groh-Wargo S.
        Exploring innovations in human milk analysis in the neonatal intensive care unit: a survey of the United States.
        Front Nutr. 2021; 8 ([published Online First: Epub Date]|)https://doi.org/10.3389/fnut.2021.692600
        • Concheiro-Guisan A.
        • Alonso-Clemente S.
        • Suarez-Albo M.
        • Duran-Fernandez Feijoo C.
        • Fiel-Ozores A.
        • Fernandez-Lorenzo J.R.
        The practicality of feeding defatted human milk in the treatment of congenital chylothorax.
        Breastfeed Med. 2019; 14 ([published Online First: Epub Date]|): 648-653https://doi.org/10.1089/bfm.2019.0100
        • Breast Milk Analyzer Panel Discussion
        Nutrition and feeding in infants and toddlers; 2018 september 27-29.
        2018 (Newport Beach, CA)
        • Morris Z.S.
        • Wooding S.
        • Grant J.
        The answer is 17 years, what is the question: understanding time lags in translational research.
        J R Soc Med. 2011; 104 ([published Online First: Epub Date]|): 510-520https://doi.org/10.1258/jrsm.2011.110180
        • Lucas A.
        • Gibbs J.A.
        • Lyster R.L.
        • Baum J.D.
        Creamatocrit: simple clinical technique for estimating fat concentration and energy value of human milk.
        Br Med J. 1978; 1 ([published Online First: Epub Date]|): 1018-1020https://doi.org/10.1136/bmj.1.6119.1018
        • Michaelsen K.F.
        • Pedersen S.B.
        • Skafte L.
        • Jaeger P.
        • Peitersen B.
        Infrared analysis for determining macronutrients in human milk.
        J Pediatr Gastroenterol Nutr. 1988; 7 ([published Online First: Epub Date]|): 229-235https://doi.org/10.1097/00005176-198803000-00013
        • Polberger S.
        • Räihä N.C.R.
        • Juvonen P.
        • Moro G.E.
        • Minoli I.
        • Warm A.
        Individualized protein fortification of human milk for preterm infants: comparison of ultrafiltrated human milk protein and a bovine whey fortifier.
        J Pediatr Gastroenterol Nutr. 1999; 29: 332-338
        • Parat S.
        • Groh-Wargo S.
        • Merlino S.
        • Wijers C.
        • Super D.M.
        Validation of mid-infrared spectroscopy for macronutrient analysis of human milk.
        J Perinatol. 2017; 37 ([published Online First: Epub Date]|): 822-826https://doi.org/10.1038/jp.2017.52
        • Sauer C.W.
        • Kim J.H.
        Human milk macronutrient analysis using point-of-care near-infrared spectrophotometry.
        J Perinatol. 2011; 31 ([published Online First: Epub Date]|): 339-343https://doi.org/10.1038/jp.2010.123
        • (U.S.) EksnioCHaHD
        Breastmilk ecology: genesis of infant nutrition (BEGIN) meeting series. Working group 5, translation and integration/NICHD, NIH. Secondary breastmilk ecology: genesis of infant nutrition (BEGIN) meeting series. Working group 5, translation and integration/NICHD, NIH.
        2021
        • Gianni M.L.
        • Bezze E.N.
        • Sannino P.
        • et al.
        Maternal views on facilitators of and barriers to breastfeeding preterm infants.
        BMC Pediatr. 2018; 18 ([published Online First: Epub Date]|): 283https://doi.org/10.1186/s12887-018-1260-2
        • Goldstein G.P.
        • Pai V.V.
        • Liu J.
        • et al.
        Racial/ethnic disparities and human milk use in necrotizing enterocolitis.
        Pediatr Res. 2020; 88 ([published Online First: Epub Date]|): 3-9https://doi.org/10.1038/s41390-020-1073-5
        • Kwan C.
        • Fusch G.
        • Rochow N.
        • Fusch C.
        Milk analysis using milk analyzers in a standardized setting (MAMAS) study: a multicentre quality initiative.
        Clin Nutr. 2020; 39 ([published Online First: Epub Date]|): 2121-2128https://doi.org/10.1016/j.clnu.2019.08.028
        • Fenton T.R.
        • Elmrayed S.
        The importance of reporting energy values of human milk as metabolizable energy.
        Front Nutr. 2021; 8 ([published Online First: Epub Date]|)https://doi.org/10.3389/fnut.2021.655026
        • Fusch G.
        • Rochow N.
        • Choi A.
        • et al.
        Rapid measurement of macronutrients in breast milk: how reliable are infrared milk analyzers?.
        Clin Nutr. 2015; 34 ([published Online First: Epub Date]|): 465-476https://doi.org/10.1016/j.clnu.2014.05.005
        • Smilowitz J.T.
        • Gho D.S.
        • Mirmiran M.
        • German J.B.
        • Underwood M.A.
        Rapid measurement of human milk macronutrients in the neonatal intensive care unit:accuracy and precision of fourier Transform mid-infrared spectroscopy.
        J Hum Lactation. 2014; 30 ([published Online First: Epub Date]|): 180-189https://doi.org/10.1177/0890334413517941
        • Hampel D.
        • Dror D.K.
        • Allen L.H.
        Micronutrients in human milk: analytical methods.
        Adv Nutr. 2018; 9 (313s-31s [published Online First: Epub Date]|)https://doi.org/10.1093/advances/nmy017
        • Staub E.
        • Evers K.
        • Askie L.M.
        Enteral zinc supplementation for prevention of morbidity and mortality in preterm neonates.
        Cochrane Database Syst Rev. 2021; 3 ([published Online First: Epub Date]|): Cd012797https://doi.org/10.1002/14651858.CD012797.pub2
        • Young B.E.
        • Borman L.L.
        • Heinrich R.
        • et al.
        Effect of pooling practices and time postpartum of milk donations on the energy, macronutrient, and zinc concentrations of resultant donor human milk pools.
        J Pediatr. 2019; 214 ([published Online First: Epub Date]|): 54-59https://doi.org/10.1016/j.jpeds.2019.07.042
        • Fabrizio V.
        • Trzaski J.M.
        • Brownell E.A.
        • et al.
        Individualized versus standard diet fortification for growth and development in preterm infants receiving human milk.
        Cochrane Database Syst Rev. 2020; 11 ([published Online First: Epub Date]|): Cd013465https://doi.org/10.1002/14651858.CD013465.pub2
        • Parat S.
        • Raza P.
        • Kamleh M.
        • Super D.
        • Groh-Wargo S.
        Targeted breast milk fortification for very low birth weight (VLBW) infants: nutritional intake, growth outcome and body composition.
        Nutrients. 2020; 12 ([published Online First: Epub Date]|)https://doi.org/10.3390/nu12041156