Advertisement

Pivotal challenges in artificial intelligence and machine learning applications for neonatal care

Published:October 12, 2022DOI:https://doi.org/10.1016/j.siny.2022.101393

      Highlights

      • Development and Derivation Challenges of AI/ML in Neonatal Clinical Decision Making.
      • Evaluation and interpretability of AI/ML at the bedside.
      • Dissemination and Diffusion of Clinical Decision Support tools.

      Abstract

      Clinical decision support systems (CDSS) that are developed based on artificial intelligence and machine learning (AI/ML) approaches carry transformative potentials in improving the way neonatal care is practiced. From the use of the data available from electronic health records to physiological sensors and imaging modalities, CDSS can be used to predict clinical outcomes (such as mortality rate, hospital length of state, or surgical outcome) or early warning signs of diseases in neonates. However, only a limited number of clinical decision support systems for neonatal care are currently deployed in healthcare facilities or even implemented during pilot trials (or prospective studies). This is mostly due to the unresolved challenges in developing a real-time supported clinical decision support system, which mainly consists of three phases: model development, model evaluation, and real-time deployment. In this review, we introduce some of the pivotal challenges and factors we must consider during the implementation of real-time supported CDSS.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sutton R.T.
        • Pincock D.
        • Baumgart D.C.
        • et al.
        An overview of clinical decision support systems: benefits, risks, and strategies for success.
        npj Digit. Med. 2020; 3: 17https://doi.org/10.1038/s41746-020-0221-y
        • Beam A.L.
        • Kohane I.S.
        Big data and machine learning in health care.
        JAMA. 2018; 319: 1317-1318https://doi.org/10.1001/jama.2017.18391
        • Deo R.C.
        Machine learning in medicine.
        Circulation. 2015; 132: 1920-1930https://doi.org/10.1161/CIRCULATIONAHA.115.001593
        • Zhao H.
        • Des Combes R.T.
        • Zhang K.
        • Gordon G.
        On learning invariant representations for domain adaptation.
        in: International conference on machine learning. PMLR, 2019, May: 7523-7532
        • Lin J.C.
        • Strauss R.G.
        • Kulhavy J.C.
        • et al.
        Phlebotomy overdraw in the neonatal intensive care nursery.
        Pediatrics. 2000; 106: E19https://doi.org/10.1542/peds.106.2.e19
        • Schelonka R.L.
        • Chai M.K.
        • Yoder B.A.
        • Hensley D.
        • Brockett R.M.
        • Ascher D.P.
        Volume of blood required to detect common neonatal pathogens.
        J Pediatr. 1996; 129: 275-278https://doi.org/10.1016/s0022-3476(96)70254-8
        • Shellhaas R.A.
        Continuous long-term electroencephalography: the gold standard for neonatal seizure diagnosis.
        Semin Fetal Neonatal Med. 2015; 20: 149-153https://doi.org/10.1016/j.siny.2015.01.005
        • Palodeto V.
        • Marques J.L.B.
        Methodology for classification and analysis of neonate and adult ECG.
        in: Magjarevic R. Nagel J.H. World congress on medical physics and biomedical engineering 2006. IFMBE proceedings. vol. 14. Springer, Berlin, Heidelberg2007https://doi.org/10.1007/978-3-540-36841-0_293
        • Misri S.
        • Oberlander T.F.
        • Fairbrother N.
        • et al.
        Relation between prenatal maternal mood and anxiety and neonatal health.
        Can J Psychiatr. 2004; 49: 684-689https://doi.org/10.1177/070674370404901006
        • Bhutta Z.A.
        • Lassi Z.S.
        • Blanc A.
        • Donnay F.
        Linkages among reproductive health, maternal health, and perinatal outcomes.
        Semin Perinatol. 2010; 34: 434-445https://doi.org/10.1053/j.semperi.2010.09.002
        • Kwok T.C.
        • Henry C.
        • Saffaran S.
        • et al.
        Application and potential of artificial intelligence in neonatal medicine [published online ahead of print, 2022 Apr 18].
        Semin Fetal Neonatal Med. 2022; 101346https://doi.org/10.1016/j.siny.2022.101346
        • Chen I.Y.
        • Johansson F.D.
        • Sontag D.
        Why is my classifier discriminatory?.
        in: 32nd conference on neural information processing systems (NeurIPS). 2018
        • Maleki F.
        • Muthukrishnan N.
        • Ovens K.
        • Reinhold C.
        • Forghani R.
        Machine learning algorithm validation: from essentials to advanced applications and implications for regulatory certification and deployment.
        Neuroimaging Clin. 2020; 30: 433-445https://doi.org/10.1016/j.nic.2020.08.004
        • Koivu A.
        • Sairanen M.
        Predicting risk of stillbirth and preterm pregnancies with machine learning.
        Health Inf Sci Syst. 2020 Mar 25; 8 (PMID: 32226625; PMCID: PMC7096343): 14https://doi.org/10.1007/s13755-020-00105-9
        • McAdams R.M.
        • Kaur R.
        • Sun Y.
        • et al.
        Predicting clinical outcomes using artificial intelligence and machine learning in neonatal intensive care units: a systematic review.
        J Perinatol. 2022; https://doi.org/10.1038/s41372-022-01392-8
        • Kelly C.J.
        • Karthikesalingam A.
        • Suleyman M.
        • et al.
        Key challenges for delivering clinical impact with artificial intelligence.
        BMC Med. 2019; 17: 195https://doi.org/10.1186/s12916-019-1426-2
        • Kompa B.
        • Snoek J.
        • Beam A.L.
        Second opinion needed: communicating uncertainty in medical machine learning.
        npj Digit. Med. 2021; 4: 4https://doi.org/10.1038/s41746-020-00367-3
        • Lu C.
        • Lemay A.
        • Chang K.
        • Hoebel K.
        • Kalpathy-Cramer J.
        Fair conformal predictors for applications in medical imaging.
        Proc AAAI Conf Artif Intell. 2022, June; 36: 12008-12016
        • Adams R.
        • Henry K.E.
        • Sridharan A.
        • et al.
        Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis.
        Nat Med. 2022; 28: 1455-1460https://doi.org/10.1038/s41591-022-01894-0
        • Lundberg S.M.
        • Lee S.I.
        A unified approach to interpreting model predictions.
        Adv Neural Inf Process Syst. 2017; 30
        • Sandhu S.
        • Lin A.L.
        • Brajer N.
        • Sperling J.
        • Ratliff W.
        • Bedoya A.D.
        • Balu S.
        • O'Brien C.
        • Sendak M.P.
        Integrating a machine learning system into clinical workflows: qualitative study.
        J Med Internet Res. 2020 Nov 19; 22 (10.2196/22421. PMID: 33211015; PMCID: PMC7714645)e22421
        • Kamaleswaran R.
        • James A.
        • Collins C.
        • McGregor C.
        CoRAD: visual analytics for cohort analysis.
        in: 2016 IEEE international conference on healthcare informatics (ICHI). IEEE, 2016, October: 517-526
        • Kamaleswaran R.
        • Collins C.
        • James A.
        • McGregor C.
        PhysioEx: visual analysis of physiological event streams.
        Comput Graph Forum. 2016, June; 35: 331-340
        • Kamaleswaran R.
        • McGregor C.
        A review of visual representations of physiologic data.
        JMIR Med. Informatics. 2016; 4: e5186
        • Forbes A.
        • Surdeanu M.
        • Jansen P.
        • Carrington J.
        Transmitting narrative: an interactive shift-summarization tool for improving nurse communication.
        in: Proceedings of the IEEE workshop on interactive visual text analytics (TextVis). vol. 2. 2013, October: 5
        • Bhattacharya S.
        • Rajan V.
        • Shrivastava H.
        ICU mortality prediction: a classification algorithm for imbalanced datasets.
        in: Proc. Of the 31st AAAI. 2017: 1288-1294https://doi.org/10.1609/aaai.v31i1.10721
        • Alves T.
        • Laender A.
        • Veloso A.
        • Ziviani N.
        Dynamic prediction of ICU mortality risk using domain adaptation.
        in: 2018 IEEE international conference on big data (big data). IEEE, 2018, December: 1328-1336
        • Gholami B.
        • Haddad W.M.
        • Tannenbaum A.R.
        Relevance vector machine learning for neonate pain intensity assessment using digital imaging.
        IEEE (Inst Electr Electron Eng) Trans Biomed Eng. June 2010; 57: 1457-1466https://doi.org/10.1109/TBME.2009.2039214
        • Rajasekhar G.P.
        • Granger E.
        • Cardinal P.
        Deep domain adaptation with ordinal regression for pain assessment using weakly-labeled videos.
        Image Vis Comput. 2021; 110104167
        • Choudhary A.
        • Tong L.
        • Zhu Y.
        • Wang M.D.
        Advancing medical imaging informatics by deep learning-based domain adaptation.
        Yearbook Med. Inform. 2020; 29: 129-138
        • Blount M.
        • et al.
        Real-time analysis for intensive care: development and deployment of the Artemis analytic system.
        in: IEEE engineering in medicine and biology magazine. vol. 29. March-April 2010: 110-118https://doi.org/10.1109/MEMB.2010.936454 (no. 2)
        • Parsa M.
        • Panda P.
        • Sen S.
        • Roy K.
        Staged inference using conditional deep learning for energy efficient real-time smart diagnosis.
        in: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2017, July: 78-81
        • Ancker J.S.
        • Edwards A.
        • Nosal S.
        • Hauser D.
        • Mauer E.
        • Kaushal R.
        With the HITEC Investigators. Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system.
        BMC Med Inf Decis Making. 2017 Apr 10; 17 (Erratum in: BMC Med Inform Decis Mak. 2019 Nov 18;19(1):227. PMID: 28395667; PMCID: PMC5387195): 36https://doi.org/10.1186/s12911-017-0430-8
        • Wang D.
        • Wang L.
        • Zhang Z.
        • Wang D.
        • Zhu H.
        • Gao Y.
        • Tian F.
        Brilliant AI doctor” in rural clinics: challenges in AI-powered clinical decision support system deployment.
        in: Proceedings of the 2021 CHI conference on human factors in computing systems. 2021, May: 1-18
        • Sandhu S.
        • Lin A.L.
        • Brajer N.
        • Sperling J.
        • Ratliff W.
        • Bedoya A.D.
        • Balu S.
        • O'Brien C.
        • Sendak M.P.
        Integrating a machine learning system into clinical workflows: qualitative study.
        J Med Internet Res. 2020 Nov 19; 22 (10.2196/22421. PMID: 33211015; PMCID: PMC7714645)e22421