Advertisement

Update on pre-ECMO evaluation and treatment for term infants in respiratory failure

Published:November 17, 2022DOI:https://doi.org/10.1016/j.siny.2022.101401

      Abstract

      The epidemiology, diagnostic and management approach to severe hypoxemic respiratory failure in the term and near-term neonate has evolved over time, as has the need for extracorporeal membrane oxygenation (ECMO) support in this patient population. Many patients who historically would have required ECMO support now respond to less invasive therapies, with patients requiring ECMO generally representing a higher risk and more heterogenous group of underlying diagnoses. This review will highlight these changes over time and the current available evidence for the diagnosis and management of these infants, as well as the current indications and relative contraindications to ECMO support when oxygen delivery cannot meet demand with less invasive management.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bartlett R.H.
        • et al.
        Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study.
        Pediatrics. 1985; 76: 479-487
        • O'Rourke P.P.
        • et al.
        Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: a prospective randomized study.
        Pediatrics. 1989; 84: 957-963
      1. UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation. UK Collaborative ECMO Trail Group.
        Lancet. 1996; 348: 75-82
        • Angus D.C.
        • Linde-Zwirble W.T.
        • Clermont G.
        • Griffin M.F.
        • Clark R.H.
        Epidemiology of neonatal respiratory failure in the United States: projections from California and New York.
        Am J Respir Crit Care Med. 2001; 164: 1154-1160https://doi.org/10.1164/ajrccm.164.7.2012126
        • Farrow K.N.
        • Fliman P.
        • Steinhorn R.H.
        The diseases treated with ECMO: focus on PPHN.
        Semin Perinatol. 2005; 29: 8-14https://doi.org/10.1053/j.semperi.2005.02.003
        • Clark R.H.
        The epidemiology of respiratory failure in neonates born at an estimated gestational age of 34 weeks or more.
        J Perinatol. 2005; 25: 251-257https://doi.org/10.1038/sj.jp.7211242
        • Guner Y.
        • et al.
        Management of congenital diaphragmatic hernia treated with extracorporeal life support: Interim Guidelines consensus statement from the extracorporeal life support organization.
        Am Soc Artif Intern Organs J. 2021; 67: 113-120https://doi.org/10.1097/MAT.0000000000001338
        • Steurer M.A.
        • et al.
        Persistent pulmonary hypertension of the newborn in late preterm and term infants in California.
        Pediatrics. 2017; 139https://doi.org/10.1542/peds.2016-1165
      2. ECLS registry report. 2022
        • Agarwal P.
        • Altinok D.
        • Desai J.
        • Shanti C.
        • Natarajan G.
        In-hospital outcomes of neonates with hypoxic-ischemic encephalopathy receiving extracorporeal membrane oxygenation.
        J Perinatol. 2019; 39: 661-665https://doi.org/10.1038/s41372-019-0345-6
        • Cuevas Guaman M.
        • Lucke A.M.
        • Hagan J.L.
        • Kaiser J.R.
        Bleeding complications and mortality in neonates receiving therapeutic hypothermia and extracorporeal membrane oxygenation.
        Am J Perinatol. 2018; 35: 271-276https://doi.org/10.1055/s-0037-1607197
        • Cashen K.
        • et al.
        Is therapeutic hypothermia during neonatal extracorporeal membrane oxygenation associated with intracranial hemorrhage?.
        Perfusion. 2018; 33: 354-362https://doi.org/10.1177/0267659117747693
        • Yum S.K.
        • et al.
        Therapeutic hypothermia in infants with hypoxic-ischemic encephalopathy and reversible persistent pulmonary hypertension: short-term hospital outcomes.
        J Matern Fetal Neonatal Med. 2018; 31: 3108-3114https://doi.org/10.1080/14767058.2017.1365123
        • Bagdure D.
        • et al.
        Extracorporeal membrane oxygenation for neonates with congenital renal and urological anomalies and pulmonary hypoplasia: a case report and review of the extracorporeal life support organization registry.
        J Pediatr Intensive Care. 2017; 6: 188-193https://doi.org/10.1055/s-0037-1598036
        • Cuestas J.
        • et al.
        Mortality trends in neonatal ECMO for pulmonary hypoplasia: a review of the Extracorporeal Life Support Organization database from 1981 to 2016.
        J Pediatr Surg. 2021; 56: 788-794https://doi.org/10.1016/j.jpedsurg.2020.09.005
        • Singh Y.
        • Bhombal S.
        • Katheria A.
        • Tissot C.
        • Fraga M.V.
        The evolution of cardiac point of care ultrasound for the neonatologist.
        Eur J Pediatr. 2021; 180: 3565-3575https://doi.org/10.1007/s00431-021-04153-5
        • Stankiewicz P.
        • et al.
        Genomic and genic deletions of the FOX gene cluster on 16q24.1 and inactivating mutations of FOXF1 cause alveolar capillary dysplasia and other malformations.
        Am J Hum Genet. 2009; 84: 780-791https://doi.org/10.1016/j.ajhg.2009.05.005
        • Gupta A.
        • et al.
        Inhaled nitric oxide and gentle ventilation in the treatment of pulmonary hypertension of the newborn--a single-center, 5-year experience.
        J Perinatol. 2002; 22: 435-441https://doi.org/10.1038/sj.jp.7210761
        • Engle W.A.
        • et al.
        Controlled prospective randomized comparison of high-frequency jet ventilation and conventional ventilation in neonates with respiratory failure and persistent pulmonary hypertension.
        J Perinatol. 1997; 17: 3-9
        • Coates E.W.
        • Klinepeter M.E.
        • O'Shea T.M.
        Neonatal pulmonary hypertension treated with inhaled nitric oxide and high-frequency ventilation.
        J Perinatol. 2008; 28: 675-679https://doi.org/10.1038/jp.2008.76
        • Kinsella J.P.
        • Abman S.H.
        Inhaled nitric oxide and high frequency oscillatory ventilation in persistent pulmonary hypertension of the newborn.
        Eur J Pediatr. 1998; 157: S28-S30https://doi.org/10.1007/pl00014288
        • Kinsella J.P.
        • et al.
        Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn.
        J Pediatr. 1997; 131: 55-62https://doi.org/10.1016/s0022-3476(97)70124-0
        • Soll R.F.
        Synthetic surfactant for respiratory distress syndrome in preterm infants.
        Cochrane Database Syst Rev. 2000; : CD001149https://doi.org/10.1002/14651858.CD001149
        • Findlay R.D.
        • Taeusch H.W.
        • Walther F.J.
        Surfactant replacement therapy for meconium aspiration syndrome.
        Pediatrics. 1996; 97: 48-52
        • Lotze A.
        • et al.
        Multicenter study of surfactant (beractant) use in the treatment of term infants with severe respiratory failure. Survanta in Term Infants Study Group.
        J Pediatr. 1998; 132: 40-47https://doi.org/10.1016/s0022-3476(98)70482-2
        • Polin R.A.
        • Carlo W.A.
        Committee on, F., Newborn & American Academy of, P. Surfactant replacement therapy for preterm and term neonates with respiratory distress.
        Pediatrics. 2014; 133: 156-163https://doi.org/10.1542/peds.2013-3443
        • Van Meurs K.
        • Congenital Diaphragmatic Hernia Study G.
        Is surfactant therapy beneficial in the treatment of the term newborn infant with congenital diaphragmatic hernia?.
        J Pediatr. 2004; 145: 312-316https://doi.org/10.1016/j.jpeds.2004.04.056
        • Lally K.P.
        • et al.
        Surfactant does not improve survival rate in preterm infants with congenital diaphragmatic hernia.
        J Pediatr Surg. 2004; 39: 829-833https://doi.org/10.1016/j.jpedsurg.2004.02.011
        • Konduri G.G.
        • Lakshminrusimha S.
        Surf early to higher tides: surfactant therapy to optimize tidal volume, lung recruitment, and iNO response.
        J Perinatol. 2021; 41: 1-3https://doi.org/10.1038/s41372-020-0764-4
        • Jain A.
        • et al.
        Care of the critically ill neonate with hypoxemic respiratory failure and acute pulmonary hypertension: framework for practice based on consensus opinion of neonatal hemodynamics working group.
        J Perinatol. 2022; 42: 3-13https://doi.org/10.1038/s41372-021-01296-z
        • Clark R.H.
        • et al.
        Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group.
        N Engl J Med. 2000; 342: 469-474https://doi.org/10.1056/NEJM200002173420704
        • Group N.I.N.O.S.
        Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure.
        N Engl J Med. 1997; 336: 597-604
        • Konduri G.G.
        • et al.
        A randomized trial of early versus standard inhaled nitric oxide therapy in term and near-term newborn infants with hypoxic respiratory failure.
        Pediatrics. 2004; 113: 559-564https://doi.org/10.1542/peds.113.3.559
        • Committee on F.
        Use of Inhaled Nitric Oxide Pediatrics. 2000; 106: 344-345
        • Abramov A.
        • et al.
        Comparative outcomes of right versus left congenital diaphragmatic hernia: a multicenter analysis.
        J Pediatr Surg. 2020; 55: 33-38https://doi.org/10.1016/j.jpedsurg.2019.09.046
        • Kelly L.E.
        • Ohlsson A.
        • Shah P.S.
        Sildenafil for pulmonary hypertension in neonates.
        Cochrane Database Syst Rev. 2017; 8: CD005494https://doi.org/10.1002/14651858.CD005494.pub4
        • Pierce C.M.
        • et al.
        Efficacy and safety of IV sildenafil in the treatment of newborn infants with, or at risk of, persistent pulmonary hypertension of the newborn (PPHN): a multicenter, randomized, placebo-controlled trial.
        J Pediatr. 2021; 237: 154-161 e153https://doi.org/10.1016/j.jpeds.2021.05.051
        • McNamara P.J.
        • Laique F.
        • Muang-In S.
        • Whyte H.E.
        Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn.
        J Crit Care. 2006; 21: 217-222https://doi.org/10.1016/j.jcrc.2006.01.001
        • Bassler D.
        • Kreutzer K.
        • McNamara P.
        • Kirpalani H.
        Milrinone for persistent pulmonary hypertension of the newborn.
        Cochrane Database Syst Rev. 2010; : CD007802https://doi.org/10.1002/14651858.CD007802.pub2
        • Lakshminrusimha S.
        • et al.
        Milrinone in congenital diaphragmatic hernia - a randomized pilot trial: study protocol, review of literature and survey of current practices.
        Matern Health Neonatol Perinatol. 2017; 3: 27https://doi.org/10.1186/s40748-017-0066-9
        • Ahmad K.A.
        • et al.
        Intravenous epoprostenol improves oxygenation index in patients with persistent pulmonary hypertension of the newborn refractory to nitric oxide.
        J Perinatol. 2018; 38: 1212-1219https://doi.org/10.1038/s41372-018-0179-7
        • Brown A.T.
        • et al.
        Inhaled epoprostenol therapy for pulmonary hypertension: improves oxygenation index more consistently in neonates than in older children.
        Pulm Circ. 2012; 2: 61-66https://doi.org/10.4103/2045-8932.94835
        • Berger-Caron F.
        • et al.
        Inhaled epoprostenol for pulmonary hypertension treatment in neonates: a 12-year experience.
        Am J Perinatol. 2019; 36: 1142-1149https://doi.org/10.1055/s-0038-1676483
        • Lawrence K.M.
        • et al.
        Treprostinil improves persistent pulmonary hypertension associated with congenital diaphragmatic hernia.
        J Pediatr. 2018; 200: 44-49https://doi.org/10.1016/j.jpeds.2018.04.052
      3. Remodulin as add-on therapy for the treatment of persistent pulmonary hypertension of the newborn. Clinicaltrials.gov identifier NCT02261883 (Updated April 14, 2022.).

        • Gupta N.
        • Kamlin C.O.
        • Cheung M.
        • Stewart M.
        • Patel N.
        Prostaglandin E1 use during neonatal transfer: potential beneficial role in persistent pulmonary hypertension of the newborn.
        Arch Dis Child Fetal Neonatal Ed. 2013; 98: F186-F188https://doi.org/10.1136/archdischild-2012-303294
        • Lawrence K.M.
        • et al.
        Use of prostaglandin E1 to treat pulmonary hypertension in congenital diaphragmatic hernia.
        J Pediatr Surg. 2019; 54: 55-59https://doi.org/10.1016/j.jpedsurg.2018.10.039
        • Mohamed W.A.
        • Ismail M.
        A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn.
        J Perinatol. 2012; 32: 608-613https://doi.org/10.1038/jp.2011.157
        • Steinhorn R.H.
        • et al.
        Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial.
        J Pediatr. 2016; 177: 90-96 e93https://doi.org/10.1016/j.jpeds.2016.06.078
        • Zhang J.
        • Penny D.J.
        • Kim N.S.
        • Yu V.Y.
        • Smolich J.J.
        Mechanisms of blood pressure increase induced by dopamine in hypotensive preterm neonates.
        Arch Dis Child Fetal Neonatal Ed. 1999; 81: F99-F104https://doi.org/10.1136/fn.81.2.f99
        • Liet J.M.
        • et al.
        Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus.
        J Pediatr. 2002; 140: 373-375https://doi.org/10.1067/mpd.2002.123100
        • McNamara P.J.
        • Giesinger R.E.
        • Lakshminrusimha S.
        Dopamine and neonatal pulmonary hypertension-pressing need for a better pressor?.
        J Pediatr. 2022; 246: 242-250https://doi.org/10.1016/j.jpeds.2022.03.022
        • Tourneux P.
        • Rakza T.
        • Bouissou A.
        • Krim G.
        • Storme L.
        Pulmonary circulatory effects of norepinephrine in newborn infants with persistent pulmonary hypertension.
        J Pediatr. 2008; 153: 345-349https://doi.org/10.1016/j.jpeds.2008.03.007
        • Valverde E.
        • et al.
        Dopamine versus epinephrine for cardiovascular support in low birth weight infants: analysis of systemic effects and neonatal clinical outcomes.
        Pediatrics. 2006; 117: e1213-1222https://doi.org/10.1542/peds.2005-2108
        • Thibonnier M.
        • et al.
        Human vascular endothelial cells express oxytocin receptors.
        Endocrinology. 1999; 140: 1301-1309https://doi.org/10.1210/endo.140.3.6546
        • Siehr S.L.
        • et al.
        Hemodynamic effects of phenylephrine, vasopressin, and epinephrine in children with pulmonary hypertension: a pilot study.
        Pediatr Crit Care Med. 2016; 17: 428-437https://doi.org/10.1097/PCC.0000000000000716
        • Mohamed A.
        • Nasef N.
        • Shah V.
        • McNamara P.J.
        Vasopressin as a rescue therapy for refractory pulmonary hypertension in neonates: case series.
        Pediatr Crit Care Med. 2014; 15: 148-154https://doi.org/10.1097/PCC.0b013e31829f5fce
        • Mohamed A.A.
        • et al.
        Vasopressin for refractory persistent pulmonary hypertension of the newborn in preterm neonates - a case series.
        J Matern Fetal Neonatal Med. 2022; 35: 1475-1483https://doi.org/10.1080/14767058.2020.1757642
        • Joshi S.
        • Quinones Cardona V.
        • Menkiti O.R.
        Use of vasopressin in persistent pulmonary hypertension of the newborn: a case series. vol. 10. SAGE Open Med Case Rep, 2022https://doi.org/10.1177/2050313X221102289 (2050313X221102289)
        • Perez M.
        • et al.
        Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn.
        Am J Physiol Lung Cell Mol Physiol. 2012; 302: L595-603https://doi.org/10.1152/ajplung.00145.2011
        • Perez M.
        • Wedgwood S.
        • Lakshminrusimha S.
        • Farrow K.N.
        • Steinhorn R.H.
        Hydrocortisone normalizes phosphodiesterase-5 activity in pulmonary artery smooth muscle cells from lambs with persistent pulmonary hypertension of the newborn.
        Pulm Circ. 2014; 4: 71-81https://doi.org/10.1086/674903
        • Tripathi S.
        • Saili A.
        The effect of steroids on the clinical course and outcome of neonates with meconium aspiration syndrome.
        J Trop Pediatr. 2007; 53: 8-12https://doi.org/10.1093/tropej/fml018
        • Selewski D.T.
        • et al.
        The impact of fluid overload on outcomes in children treated with extracorporeal membrane oxygenation: a multicenter retrospective cohort study.
        Pediatr Crit Care Med. 2017; 18: 1126-1135https://doi.org/10.1097/PCC.0000000000001349
        • Wild K.T.
        • Rintoul N.
        • Kattan J.
        • Gray B.
        Extracorporeal life support organization (ELSO): Guidelines for neonatal respiratory failure.
        Am Soc Artif Intern Organs J. 2020; 66: 463-470https://doi.org/10.1097/MAT.0000000000001153
        • Fletcher K.
        • Chapman R.
        • Keene S.
        An overview of medical ECMO for neonates.
        Semin Perinatol. 2018; 42: 68-79https://doi.org/10.1053/j.semperi.2017.12.002