Advertisement

Milestones for clinical translation of the artificial placenta

Published:November 16, 2022DOI:https://doi.org/10.1016/j.siny.2022.101408

      Abstract

      Despite significant advances in the treatment of prematurity, premature birth results in significant mortality and morbidity. In particular, extremely low gestational age newborns (ELGANs) defined as <28 weeks estimated gestational age (EGA) suffer from disproportionate mortality and morbidity. A radical paradigm shift in the treatment of prematurity is to recreate fetal physiology using an extracorporeal VV-ECLS artificial placenta (AP) or an AV-ECLS artificial womb (AW). Over the past 15 years, tremendous advances have been made in the laboratory confirming long-term support and organ protection and ongoing development. The major milestones to clinical application are miniaturization, anticoagulation, clinical risk stratification, specialized critical care protocols, a regulatory path and a strategy and platform to translate technology to the bedside. Currently, several groups are addressing the remaining milestones for clinical translation.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Fetal and Neonatal Medicine
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Zapol WM, Kolobow T, Pierce JG and Bowman RL. Artificial placenta: two days of total extrauterine support of the isolated premature lamb fetus. Science 166(905):617-618.

        • Church J.T.
        • Coughlin M.A.
        • Perkins E.M.
        • et al.
        The artificial placenta: continued lung development during extracorporeal support in a preterm lamb model.
        J Pediatr Surg. 2018; 53: 1896-1903
        • Gray B.W.
        • El-Sabbagh A.
        • Zakem S.J.
        • et al.
        Development of an artificial placenta V: 70 h veno-venous extracorporeal life support after ventilatory failure in premature lambs.
        J Pediatr Surg. 2013; 48: 145-153
        • Dreyfuss D.
        • Saumon G.
        Ventilator-induced lung injury: lessons from experimental studies.
        Am J Respir Crit Care Med. 1998; 157: 294-323
        • Lang J.A.
        • Pearson J.T.
        • Binder‐Heschl C.
        • et al.
        Increase in pulmonary blood flow at birth: role of oxygen and lung aeration.
        J Physiol. 2016; 594: 1389-1398
        • Aly H.
        • Hammad T.A.
        • Essers J.
        • Wung J.T.
        Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants?.
        Brain Dev. 2012; 34: 201-205
        • Cayabyab R.
        • Ramanathan R.
        Retinopathy of prematurity: therapeutic strategies based on pathophysiology.
        Neonatology. 2016; 109: 369-376
      2. Subramaniam P, Ho JJ and Davis PG. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 201;14: Cd001243.

        • Sweet D.G.
        • Carnielli V.
        • Greisen G.
        • et al.
        European consensus guidelines on the management of respiratory distress syndrome - 2019 update.
        Neonatology. 2019; 115: 432-450
        • American Academy of Pediatrics Committee on Fetus and Newborn
        Respiratory support in preterm infants at birth.
        Pediatrics. 2014; 133: 171-174
        • Carlo W.A.
        • Stark A.R.
        • Wright L.L.
        • et al.
        Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants.
        J Pediatr. 2002; 141: 370-374
        • Robbins M.
        • Trittmann J.
        • Martin E.
        • Reber K.M.
        • Nelin L.
        • Shepherd E.
        Early extubation attempts reduce length of stay in extremely preterm infants even if re-intubation is necessary.
        J Neonatal Perinat Med. 2015; 8: 91-97
        • Pakvasa M.A.
        • Saroha V.
        • Patel R.M.
        Optimizing caffeine use and risk of bronchopulmonary dysplasia in preterm infants: a systematic review, meta-analysis, and application of grading of recommendations assessment, development, and evaluation methodology.
        Clin Perinatol. 2018; 45: 273-291
        • Reoma J.
        • Rojas A.
        • Kim A.
        • et al.
        Development of an artificial placenta I: pumpless arterio-venous extracorporeal life support in a neonatal sheep model.
        J Pediatr Surg. 2009; 44: 53-59
        • Gray B.W.
        • El-Sabbagh A.
        • Rojas-Pena A.
        • et al.
        Development of an artificial placenta IV: 24 hour venovenous extracorporeal life support in premature lambs.
        Am Soc Artif Intern Organs J. 1992; 58 (American Society for Artificial Internal Organs): 148-154
        • Bryner B.
        • Gray B.
        • Perkins E.
        • et al.
        An extracorporeal artificial placenta supports extremely premature lambs for 1 week.
        J Pediatr Surg. 2015; 50: 44-49
        • Church J.T.
        • Perkins E.M.
        • Coughlin M.A.
        • et al.
        Perfluorocarbons prevent lung injury and promote development during artificial placenta support in extremely premature lambs.
        Neonatology. 2018; 113: 313-321
        • Khan P.A.
        • Cloutier M.
        • Piedboeuf B.
        Tracheal occlusion: a review of obstructing fetal lungs to make them grow and mature.
        Am J Med Genet C Semin Med Genet. 2007; 145C: 125-138
        • Leach C.L.
        • Greenspan J.S.
        • Rubenstein S.D.
        • et al.
        Partial liquid ventilation with perflubron in premature infants with severe respiratory distress syndrome.
        N Engl J Med. 1996; 335: 761-767
        • Partridge E.A.
        • Davey M.G.
        • Hornick M.A.
        • et al.
        An extra-uterine system to physiologically support the extreme premature lamb.
        Nat Commun. 2017; 815112
        • Hornick M.A.
        • Davey M.G.
        • Partridge E.A.
        • et al.
        Umbilical cannulation optimizes circuit flows in premature lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND).
        J Physiol. 2018; 596: 1575-1585
        • Fujimori K.
        • Murata Y.
        • Quilligan E.J.
        • Nagata N.
        • Hirano T.
        • Sato A.
        Distribution of oxygenated blood flow at three different routes of extracorporeal membrane oxygenation in exteriorized fetal lambs.
        J Obstet Gynaecol Res. 2001; 27: 103-109
        • Ozawa K.
        • Davey M.G.
        • Tian Z.
        • et al.
        Fetal echocardiographic assessment of cardiovascular impact of prolonged support on EXTrauterine Environment for Neonatal Development (EXTEND) system.
        Ultrasound Obstet Gynecol : Off J Int Soc Ultrasound Obstetr Gynecol. 2020; 55: 516-522
        • McGovern P.E.
        • Lawrence K.
        • Baumgarten H.
        • et al.
        Ex utero extracorporeal support as a model for fetal hypoxia and brain dysmaturity.
        Ann Thorac Surg. 2020; 109: 810-819
        • Usuda H.
        • Watanabe S.
        • Miura Y.
        • et al.
        Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week.
        Am J Obstet Gynecol. 2017; 217: 457.e1-457.e13
        • Miura Y.
        • Matsuda T.
        • Usuda H.
        • et al.
        A parallelized pumpless artificial placenta system significantly prolonged survival time in a preterm lamb model.
        Artif Organs. 2016; 40: E61-E68
        • Miura Y.
        • Usuda H.
        • Watanabe S.
        • et al.
        Stable control of physiological parameters, but not infection, in preterm lambs maintained on ex vivo uterine environment therapy.
        Artif Organs. 2017; 41: 959-968
        • Partridge E.A.
        • Davey M.G.
        • Hornick M.A.
        • Flake A.W.
        An EXTrauterine environment for neonatal development: EXTENDING fetal physiology beyond the womb.
        Semin Fetal Neonatal Med. 2017; 22: 404-409
        • Morton S.U.
        • Brodsky D.
        Fetal physiology and the transition to extrauterine life.
        Clin Perinatol. 2016; 43: 395-407
        • Mejaddam A.Y.
        • Hornick M.A.
        • McGovern P.E.
        • et al.
        Erythropoietin prevents anemia and transfusions in extremely premature lambs supported by an EXTrauterine environment for neonatal development (EXTEND).
        Fetal Diagn Ther. 2019; 46: 231-237
        • Patel R.M.
        • Kandefer S.
        • Walsh M.C.
        • et al.
        Causes and timing of death in extremely premature infants from 2000 through 2011.
        N Engl J Med. 2015; 372: 331-340
        • Stoll B.J.
        • Hansen N.I.
        • Bell E.F.
        • et al.
        Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network.
        Pediatrics. 2010; 126: 443-456
        • Schittny J.C.
        Development of the lung.
        Cell Tissue Res. 2017; 367: 427-444
        • Church J.T.
        • Coughlin M.A.
        • Perkins E.M.
        • et al.
        The artificial placenta: continued lung development during extracorporeal support in a preterm lamb model.
        J Pediatr Surg. 2018; 53: 1896-1903
        • Coughlin M.A.
        • Werner N.L.
        • Church J.T.
        • et al.
        An Artificial Placenta protects against lung injury and promotes continued lung development in extremely premature lambs.
        ASAIO J. 2019; 65: 690-697
        • Usuda H.
        • Watanabe S.
        • Saito M.
        • et al.
        Successful use of an artificial placenta–based life support system to treat extremely preterm ovine fetuses compromised by intrauterine inflammation.
        Am J Obstet Gynecol. 2020; 233: 755
        • Kuban K.C.
        • Joseph R.M.
        • O'Shea T.M.
        • et al.
        Girls and boys born before 28 Weeks gestation: risks of cognitive, behavioral, and neurologic outcomes at age 10 years.
        J Pediatr. 2016; 173: 69-75.e1
        • Marlow N.
        • Wolke D.
        • Bracewell M.A.
        • Samara M.
        Neurologic and developmental disability at six years of age after extremely preterm birth.
        N Engl J Med. 2005; 352: 9-19
        • Back S.A.
        • Riddle A.
        • Dean J.
        • Hohimer A.R.
        The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant.
        Neurotherapeutics. 2012; 9: 359-370
        • Balasubramaniam J.
        • Del Bigio M.R.
        Topical review: animal models of germinal matrix hemorrhage.
        J Child Neurol. 2006; 21: 365-371
        • Church J.T.
        • Werner N.L.
        • Coughlin M.A.
        • et al.
        Effects of an artificial placenta on brain development and injury in premature lambs.
        J Pediatr Surg. 2018; 53: 1234-1239
        • McGovern P.E.
        • Hornick M.A.
        • Mejaddam A.Y.
        • et al.
        Neurologic outcomes of the premature lamb in an extrauterine environment for neonatal development.
        J Pediatr Surg. 2020; 55: 2115-2123
        • El-Sabbagh A.M.
        • Gray B.W.
        • Shaffer A.W.
        • et al.
        Cerebral oxygenation of premature lambs supported by an artificial placenta.
        ASAIO J. 2018; 64: 552-556
        • Lawrence K.M.
        • Hennessy-Strahs S.
        • McGovern P.E.
        • et al.
        Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model.
        JCI Insight. 2018; 53: 1240-1245
        • McLeod J.S.
        • Church J.T.
        • Yerramilli P.
        • et al.
        Gastrointestinal mucosal development and injury in premature lambs supported by the artificial placenta.
        J Pediatr Surg. 2018; 53: 1240-1245
        • McLeod J.S.
        • Church J.T.
        • Coughlin M.A.
        • et al.
        Splenic development and injury in premature lambs supported by the artificial placenta.
        J Pediatr Surg. 2019; 54: 1147-1152
        • Harvey S.L.
        • Fallon B.P.
        • McLeod J.S.
        • et al.
        Hepatic function in premature lambs supported by the artificial placenta and total parenteral nutrition.
        Am Soc Artif Intern Organs J. 2022; 68 (American Society for Artificial Internal Organs : 1992): 949-955
        • Hornick M.A.
        • Mejaddam A.Y.
        • McGovern P.E.
        • et al.
        Technical feasibility of umbilical cannulation in midgestation lambs supported by the EXTra-uterine Environment for Neonatal Development (EXTEND).
        Artif Organs. 2019; 43: 1154-1161
        • Usuda H.
        • Watanabe S.
        • Saito M.
        • et al.
        Successful use of an artificial placenta to support extremely preterm ovine fetuses at the border of viability.
        Am J Obstet Gynecol. 2019; 221: 69.e1-69.e17
        • Morrison J.L.
        • Berry M.J.
        • Botting K.J.
        • et al.
        Improving pregnancy outcomes in humans through studies in sheep.
        Am J Physiol Regul Integr Comp Physiol. 2018; 315: R1123-r1153
        • Charest-Pekeski A.J.
        • Cho S.K.S.
        • Aujla T.
        • et al.
        Impact of the addition of a centrifugal pump in a preterm miniature pig model of the artificial placenta.
        Front Physiol. 2022; 13925772
        • Zwischenberger J.B.
        • Toomasian J.M.
        • Drake K.
        • Andrews A.F.
        • Kolobow T.
        • Bartlett R.H.
        Total respiratory support with single cannula venovenous ECMO: double lumen continuous flow vs. single lumen tidal flow.
        Trans Am Soc Artif Intern Organs. 1985; 31: 610-615
        • Kading J.C.
        • Langley M.W.
        • Lautner G.
        • et al.
        Tidal flow perfusion for the artificial placenta: a paradigm shift.
        Asaio J. 2020; 66: 796-802
        • Barton R.
        • Ignjatovic V.
        • Monagle P.
        Anticoagulation during ECMO in neonatal and paediatric patients.
        Thromb Res. 2019; 173: 172-177
        • Aly H.
        • Hammad T.A.
        • Essers J.
        • Wung J.T.
        Is mechanical ventilation associated with intraventricular hemorrhage in preterm infants?.
        Brain Dev. 2012; 34: 201-205
        • Schmölzer G.M.
        • Kumar M.
        • Pichler G.
        • Aziz K.
        • O'Reilly M.
        • Cheung P.Y.
        Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis.
        BMJ (Clin Res Ed). 2013; 347: f5980
        • Brisbois E.J.
        • Handa H.
        • Major T.C.
        • Bartlett R.H.
        • Meyerhoff M.E.
        Long-term nitric oxide release and elevated temperature stability with S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As polymer.
        Biomaterials. 2013; 34: 6957-6966
        • Major T.C.
        • Brant D.O.
        • Renolds M.M.
        • et al.
        The attenuation of platelet and monocyte activation in a rabbit model of.
        Biomaterials. 2010; 31: 2736-2745
        • Wo Y.
        • Li Z.
        • Brisbois E.J.
        • Colletta A.
        • et al.
        Origin of long-term storage stability and nitric oxide release behavior of CarboSil polymer doped with S-nitroso-N-acetyl-D-penicillamine.
        ACS Appl Mater Interfaces. 2015; 7: 22218-22227
        • Bellomo T.R.
        • Jeakle M.A.
        • Meyerhoff M.E.
        • Bartlett R.H.
        • Major T.C.
        The effects of the combined argatroban/nitric oxide-releasing polymer on platelet microparticle-induced thrombogenicity in coated extracorporeal circuits.
        Am Soc Artif Intern Organs J. 2021; 67 (American Society for Artificial Internal Organs : 1992): 573-582
        • De Bie F.R.
        • Davey M.G.
        • Larson A.C.
        • Deprest J.
        • Flake A.W.
        Artificial placenta and womb technology: past, current and future challenges towards clinical translation.
        Prenat Diagn. 2021; 41: 145-158
        • Ely D.M.
        • Driscoll A.K.
        Infant mortality in the United States, 2017: data from the period linked birth/infant death file.
        Natl Vital Stat Rep. 2019; 68: 1-20
        • Patel R.
        Short- and long-term outcomes for extremely preterm infants.
        Am J Perinatol. 2016; 33: 318-328
        • Bertholdt C.
        • Menard S.
        • Delorme P.
        • Lamau M.-C.
        • Goffinet F.
        • Le Ray C.
        Intraoperative adverse events associated with extremely preterm cesarean deliveries.
        Acta Obstet Gynecol Scand. 2018; 97: 608-614
        • Lannon S.M.R.
        • Guthrie K.A.
        • Vanderhoeven J.P.
        • Gammill H.S.
        Uterine rupture risk after periviable cesarean delivery.
        Obstet Gynecol. 2015; 125: 1095-1100
        • McLeod J.S.
        • Menon A.
        • Matusko N.
        • et al.
        Comparing mortality risk models in VLBW and preterm infants: systematic review and meta-analysis.
        J Perinatol. 2020; 40: 695-703